Redis 源码简洁剖析 - Sorted Set 有序集合
mhr18 2024-11-22 17:36 20 浏览 0 评论
原文: https://www.cnblogs.com/510602159-Yano/p/15855334.html
Sorted Set 是什么
有序集合(Sorted Set) 是 Redis 中一种重要的数据类型,它本身是集合类型,同时也可以支持集合中的元素带有权重,并按权重排序。
- ZRANGEBYSCORE:按照元素权重返回一个范围内的元素
- ZSCORE:返回某个元素的权重值
Sorted Set 命令及实现方法
Sorted Set 数据结构
server.h
t_zset.c
结构定义是 zset,里面包含 哈希表 dict 和 跳表 zsl 。zset 充分利用了:
- 哈希表的高效单点查询特性(ZSCORE)
- 跳表的高效范围查询(ZRANGEBYSCORE)
typedef struct zset {
dict *dict;
zskiplist *zsl;
} zset;
跳表(skiplist)
多层的有序链表。下面展示的是 3 层的跳表,头节点是一个 level 数组,作为 level0~level2 的头指针。
跳表节点的结构定义
typedef struct zskiplistNode {
// sorted set 中的元素
sds ele;
// 元素权重
double score;
// 后向指针(为了便于从跳表的尾节点倒序查找)
struct zskiplistNode *backward;
// 节点的 level 数组
struct zskiplistLevel {
// 每层上的前向指针
struct zskiplistNode *forward;
// 跨度,记录节点在某一层 *forward 指针和该节点,跨越了 level0 上的几个节点
unsigned long span;
} level[];
} zskiplistNode;
跳表的定义
typedef struct zskiplist {
// 头节点和尾节点
struct zskiplistNode *header, *tail;
unsigned long length;
int level;
} zskiplist;
跳表节点查询
在查询某个节点时,跳表会从头节点的最高层开始,查找下一个节点:
- 访问下一个节点
- 当前节点的元素权重 < 要查找的权重
- 当前节点的元素权重 = 要查找的权重,且节点数据<要查找的数据
- 访问当前节点 level 数组的下一层指针
- 当前节点的元素权重 > 要查找的权重
//获取跳表的表头
x = zsl->header;
//从最大层数开始逐一遍历
for (i = zsl->level-1; i >= 0; i--) {
...
while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score
&& sdscmp(x->level[i].forward->ele,ele) < 0))) {
...
x = x->level[i].forward;
}
...
}
层数设置
几种方法:
- 每层的节点数约是下一层节点数的一半。
- 好处:查找时类似于二分查找,查找复杂度可以降低到 O(logN)
- 坏处:每次插入/删除节点,都要调整后续节点层数,带来额外的开销
- 随机生成每个节点的层数 。Redis 跳表采用了这种方法。
Redis 中,跳表节点层数是由 zslRandomLevel 函数决定。
int zslRandomLevel(void) {
int level = 1;
while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
其中每层增加的概率是 0.25,最大层数是 32。
#define ZSKIPLIST_MAXLEVEL 32 /* Should be enough for 2^64 elements */
#define ZSKIPLIST_P 0.25 /* Skiplist P = 1/4 */
跳表插入节点 zslInsert
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned int rank[ZSKIPLIST_MAXLEVEL];
int i, level;
serverAssert(!isnan(score));
x = zsl->header;
// 从最高层的 level 开始找
for (i = zsl->level-1; i >= 0; i--) {
// 每层待插入的位置
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
// forward.score < 待插入 score || (forward.score < 待插入 score && forward.ele < ele)
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele, ele) < 0))) {
// 在同一层 level 找下一个节点
rank[i] += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
// 随机层数
level = zslRandomLevel();
// 如果待插入节点的随机层数 > 跳表当前的层数
if (level > zsl->level) {
// 增加对应的层数
for (i = zsl->level; i < level; i++) {
rank[i] = 0;
update[i] = zsl->header;
update[i]->level[i].span = zsl->length;
}
zsl->level = level;
}
// 新建节点
x = zslCreateNode(level, score, ele);
// 设置新建节点的 level 数组
for (i = 0; i < level; i++) {
x->level[i].forward = update[i]->level[i].forward;
update[i]->level[i].forward = x;
/* update span covered by update[i] as x is inserted here */
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
}
for (i = level; i < zsl->level; i++) {
update[i]->level[i].span++;
}
x->backward = (update[0] == zsl->header) ? NULL : update[0];
if (x->level[0].forward)
x->level[0].forward->backward = x;
else
zsl->tail = x;
zsl->length++;
return x;
}
跳表删除节点 zslDelete
int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i;
x = zsl->header;
// 找到待删除的节点
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
{
x = x->level[i].forward;
}
update[i] = x;
}
x = x->level[0].forward;
// 判断节点的 score 和 ele 是否符合条件
if (x && score == x->score && sdscmp(x->ele,ele) == 0) {
// 删除该节点
zslDeleteNode(zsl, x, update);
if (!node)
// 释放内存
zslFreeNode(x);
else
*node = x;
return 1;
}
return 0; /* not found */
}
Sorted Set 基本操作
首先看下如何创建跳表,代码在 object.c 中,可以看到会调用 dictCreate 函数创建哈希表,之后调用 zslCreate 函数创建跳表。
robj *createZsetObject(void) {
zset *zs = zmalloc(sizeof(*zs));
robj *o;
zs->dict = dictCreate(&zsetDictType,NULL);
zs->zsl = zslCreate();
o = createObject(OBJ_ZSET,zs);
o->encoding = OBJ_ENCODING_SKIPLIST;
return o;
}
哈希表和跳表的数据必须保持一致。我们通过 zsetAdd 函数研究一下。
zsetAdd
啥都不说了,都在流程图里。
首先判断编码是 ziplist,还是 skiplist。
ziplist 编码
里面需要判断是否要转换编码,如果要转换编码,则需要调用 zsetConvert 转换成 ziplist 编码,这里就不叙述了。
// ziplist 编码时的处理逻辑
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
unsigned char *eptr;
// zset 存在要插入的元素
if ((eptr = zzlFind(zobj->ptr, ele, &curscore)) != NULL) {
// 存储要插入的元素时,在 not exist 时更新
if (nx) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
……
if (newscore) *newscore = score;
// 原来的 score 和待插入 score 不同
if (score != curscore) {
// 先删除原来的元素
zobj->ptr = zzlDelete(zobj->ptr, eptr);
// 插入新元素
zobj->ptr = zzlInsert(zobj->ptr, ele, score);
*out_flags |= ZADD_OUT_UPDATED;
}
return 1;
}
// zset 中不存在要插入的元素
else if (!xx) {
// 检测 ele 是否过大 || ziplist 过大
if (zzlLength(zobj->ptr) + 1 > server.zset_max_ziplist_entries ||
sdslen(ele) > server.zset_max_ziplist_value ||
!ziplistSafeToAdd(zobj->ptr, sdslen(ele))) {
// 转换成 skiplist 编码
zsetConvert(zobj, OBJ_ENCODING_SKIPLIST);
} else {
// 在 ziplist 中插入 (element,score) pair
zobj->ptr = zzlInsert(zobj->ptr, ele, score);
if (newscore) *newscore = score;
*out_flags |= ZADD_OUT_ADDED;
return 1;
}
} else {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
}
skiplist 编码
// skiplist 编码时的处理逻辑
if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplistNode *znode;
dictEntry *de;
// 从哈希表中查询新增元素
de = dictFind(zs->dict, ele);
// 查询到该元素
if (de != NULL) {
/* NX? Return, same element already exists. */
if (nx) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
……
if (newscore) *newscore = score;
// 权重发生变化
if (score != curscore) {
// 更新跳表节点
znode = zslUpdateScore(zs->zsl, curscore, ele, score);
// 让哈希表的元素的值指向跳表节点的权重
dictGetVal(de) = &znode->score; /* Update score ptr. */
*out_flags |= ZADD_OUT_UPDATED;
}
return 1;
}
// 如果新元素不存在
else if (!xx) {
ele = sdsdup(ele);
// 在跳表中插入新元素
znode = zslInsert(zs->zsl, score, ele);
// 在哈希表中插入新元素
serverAssert(dictAdd(zs->dict, ele, &znode->score) == DICT_OK);
*out_flags |= ZADD_OUT_ADDED;
if (newscore) *newscore = score;
return 1;
} else {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
}
zsetAdd 整体代码
int zsetAdd(robj *zobj, double score, sds ele, int in_flags, int *out_flags, double *newscore) {
/* Turn options into simple to check vars. */
int incr = (in_flags & ZADD_IN_INCR) != 0;
int nx = (in_flags & ZADD_IN_NX) != 0;
int xx = (in_flags & ZADD_IN_XX) != 0;
int gt = (in_flags & ZADD_IN_GT) != 0;
int lt = (in_flags & ZADD_IN_LT) != 0;
*out_flags = 0; /* We'll return our response flags. */
double curscore;
/* NaN as input is an error regardless of all the other parameters. */
// 判断 score 是否合法,不合法直接 return
if (isnan(score)) {
*out_flags = ZADD_OUT_NAN;
return 0;
}
/* Update the sorted set according to its encoding. */
// ziplist 编码时的处理逻辑
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
unsigned char *eptr;
// zset 存在要插入的元素
if ((eptr = zzlFind(zobj->ptr, ele, &curscore)) != NULL) {
// 存储要插入的元素时,在 not exist 时更新
if (nx) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
/* Prepare the score for the increment if needed. */
if (incr) {
score += curscore;
if (isnan(score)) {
*out_flags |= ZADD_OUT_NAN;
return 0;
}
}
/* GT/LT? Only update if score is greater/less than current. */
if ((lt && score >= curscore) || (gt && score <= curscore)) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
if (newscore) *newscore = score;
// 原来的 score 和待插入 score 不同
if (score != curscore) {
// 先删除原来的元素
zobj->ptr = zzlDelete(zobj->ptr, eptr);
// 插入新元素
zobj->ptr = zzlInsert(zobj->ptr, ele, score);
*out_flags |= ZADD_OUT_UPDATED;
}
return 1;
}
// zset 中不存在要插入的元素
else if (!xx) {
// 检测 ele 是否过大 || ziplist 过大
if (zzlLength(zobj->ptr) + 1 > server.zset_max_ziplist_entries ||
sdslen(ele) > server.zset_max_ziplist_value ||
!ziplistSafeToAdd(zobj->ptr, sdslen(ele))) {
// 转换成 skiplist 编码
zsetConvert(zobj, OBJ_ENCODING_SKIPLIST);
} else {
// 在 ziplist 中插入 (element,score) pair
zobj->ptr = zzlInsert(zobj->ptr, ele, score);
if (newscore) *newscore = score;
*out_flags |= ZADD_OUT_ADDED;
return 1;
}
} else {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
}
/* Note that the above block handling ziplist would have either returned or
* converted the key to skiplist. */
// skiplist 编码时的处理逻辑
if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplistNode *znode;
dictEntry *de;
// 从哈希表中查询新增元素
de = dictFind(zs->dict, ele);
// 查询到该元素
if (de != NULL) {
/* NX? Return, same element already exists. */
if (nx) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
// 从哈希表中查询元素的权重
curscore = *(double *) dictGetVal(de);
// 如果要更新元素权重值
if (incr) {
score += curscore;
if (isnan(score)) {
*out_flags |= ZADD_OUT_NAN;
return 0;
}
}
/* GT/LT? Only update if score is greater/less than current. */
if ((lt && score >= curscore) || (gt && score <= curscore)) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
if (newscore) *newscore = score;
// 权重发生变化
if (score != curscore) {
// 更新跳表节点
znode = zslUpdateScore(zs->zsl, curscore, ele, score);
// 让哈希表的元素的值指向跳表节点的权重
dictGetVal(de) = &znode->score; /* Update score ptr. */
*out_flags |= ZADD_OUT_UPDATED;
}
return 1;
}
// 如果新元素不存在
else if (!xx) {
ele = sdsdup(ele);
// 在跳表中插入新元素
znode = zslInsert(zs->zsl, score, ele);
// 在哈希表中插入新元素
serverAssert(dictAdd(zs->dict, ele, &znode->score) == DICT_OK);
*out_flags |= ZADD_OUT_ADDED;
if (newscore) *newscore = score;
return 1;
} else {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
} else {
serverPanic("Unknown sorted set encoding");
}
return 0; /* Never reached. */
}
zsetDel
int zsetDel(robj *zobj, sds ele) {
// ziplist 编码
if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {
unsigned char *eptr;
// 找到对应的节点
if ((eptr = zzlFind(zobj->ptr, ele, NULL)) != NULL) {
// 从 ziplist 中删除
zobj->ptr = zzlDelete(zobj->ptr, eptr);
return 1;
}
}
// skiplist 编码
else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
// 从 skiplist 中删除
if (zsetRemoveFromSkiplist(zs, ele)) {
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
return 1;
}
} else {
serverPanic("Unknown sorted set encoding");
}
return 0; /* No such element found. */
}
zsetRemoveFromSkiplist 函数如下:
static int zsetRemoveFromSkiplist(zset *zs, sds ele) {
dictEntry *de;
double score;
de = dictUnlink(zs->dict,ele);
if (de != NULL) {
score = *(double*)dictGetVal(de);
// 从哈希表 unlink 该元素
dictFreeUnlinkedEntry(zs->dict,de);
// 从跳表中删除该元素,并释放内存空间
int retval = zslDelete(zs->zsl,score,ele,NULL);
serverAssert(retval);
return 1;
}
return 0;
}
代码中的 zslDelete 函数在跳表中分析过(文章中的跳表章节)。
相关推荐
- 【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...
- Pure Storage推出统一数据管理云平台及新闪存阵列
-
PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...
- 对Java学习的10条建议(对java课程的建议)
-
不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...
- SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!
-
官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...
- JDK21有没有什么稳定、简单又强势的特性?
-
佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...
- 「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了
-
在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...
- Java面试题及答案最全总结(2025版)
-
大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...
- 数据库日常运维工作内容(数据库日常运维 工作内容)
-
#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...
- 分布式之系统底层原理(上)(底层分布式技术)
-
作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...
- oracle 死锁了怎么办?kill 进程 直接上干货
-
1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...
- SpringBoot 各种分页查询方式详解(全网最全)
-
一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...
- 《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略
-
《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...
- LoadRunner(loadrunner录制不到脚本)
-
一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...
- Redis数据类型介绍(redis 数据类型)
-
介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...
- RMAN备份监控及优化总结(rman备份原理)
-
今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)