一文带你了解 Redis 的发布与订阅的底层原理
mhr18 2024-10-27 10:50 318 浏览 0 评论
01、前言
发布订阅系统在我们日常的工作中经常会使用到,这种场景大部分情况我们都是使用消息队列的,常用的消息队列有 Kafka,RocketMQ,RabbitMQ,每一种消息队列都有其特性,关于 Kafka 的使用和源码分析,公号前面有相关的文章,大家可以前往回顾一下,另外两款消息队列大家有需要可以自行研究,后续我们会出相应的介绍文章。这篇文章主要是给大家介绍 Redis 的发布订阅系统,很多时候我们可能不需要独立部署相应的消息队列,只是简单的使用,而且数据量也不会太大,这种情况下,我们就可以使用 Redis 的 Pub/Sub 模型。
02、使用方式
2.1 发布与订阅
Redis 的发布订阅功能主要由 PUBLISH,SUBSCRIBE,PSUBSCRIBE 命令组成,一个或者多个客户端订阅某个或者多个频道,当其他客户端向该频道发送消息的时候,订阅了该频道的客户端都会收到对应的消息。
上图中有四个客户端,Client 02,Client 03,Client 04 订阅了同一个 Sport 频道(Channel),这时当 Client 01 向 Sport Channel 发送消息 “basketball” 的时候,02-04 这三个客户端都同时收到了这条消息。
整个过程的执行命令如下:
首先开四个 Redis 的客户端,然后在 Client 02,Client 03,Client 04 中输入subscribe sport 命令,表示订阅 sport 这个频道
然后在 Client 01 的客户端中输入publish sport basketball 表示向 sport 频道发送消息 "basketball"
这个时候我们在去看下 Client 02-04 的客户端,可以看到已经收到了消息了,每个订阅了这个频道的客户端都是一样的。
这里 Client 02-Client 04 三个客户端订阅了 Sport 频道,我们叫做订阅者(subscriber),Client 01 发布消息,我们叫做发布者(publisher),发送的消息就是 message。
2.2、模式订阅
前面我们看到的是一个客户端订阅了一个 Channel,事实上单个客户端也可以同时订阅多个 Channel,采用模式匹配的方式,一个客户端可以同时订阅多个 Channel。
如上图 Client 05 通过命令subscribe run 订阅了 run 频道,Client 06 通过命令psubscribe run* 订阅了 run* 匹配的频道。当 Client 07 向 run频道发送消息 666 的时候,05 和 06 两个客户端都收到消息了;接下来 Client 07 向 run1 和 run_sport 两个频道发送消息的时候,Client 06 依旧可以收到消息,而 Client 05 就收不到了消息了。
Client 05 订阅run 频道和接收到消息:
Client 06 订阅run* 频道和接收到消息:
Client 07 向多个频道发送消息:
通过上面的案例,我们学会了一个客户端可以订阅单个或者多个频道,分别通过subscribe,psubscribe 命令,客户端可以通过 publish 发送相应的消息。
在命令行中我们可以用 Ctrl + C 来取消相关订阅,对应的命令时 unsubscribe channelName。
03、Pub/Sub 底层存储结构
3.1、订阅 Channel
在 Redis 的底层结构中,客户端和频道的订阅关系是通过一个字典加链表的结构保存的,形式如下:
在 Redis 的底层结构中,Redis 服务器结构体中定义了一个pubsub_channels 字典
structredisServer{
//用于保存所有频道的订阅关系
dict *pubsub_channels;
}
在这个字典中,key 代表的是频道名称,value 是一个链表,这个链表里面存放的是所有订阅这个频道的客户端。
所以当有客户端执行订阅频道的动作的时候,服务器就会将客户端与被订阅的频道在 pubsub_channels 字典中进行关联。
这个时候有两种情况:
- 该渠道是首次被订阅:首次被订阅说明在字典中并不存在该渠道的信息,那么程序首先要创建一个对应的 key,并且要赋值一个空链表,然后将对应的客户端加入到链表中。此时链表只有一个元素。
- 该渠道已经被其他客户端订阅过:这个时候就直接将对应的客户端信息添加到链表的末尾就好了。
比如,如果有一个新的客户端 Client 08 要订阅 run 渠道,那么上图就会变成
如果 Client 08 要订阅一个新的渠道 new_sport ,那么就会变成
整个订阅的过程可以采用下面伪代码来实现
Map<String, List<Object>> pubsub_channels = new HashMap<>();
publicvoidsubscribe(String[] subscribeList, Object client){
//遍历所有订阅的 channel,检查是否在 pubsub_channels 中,不在则创建新的 key 和空链表
for (int i = 0; i < subscribeList.length; i++) {
if (!pubsub_channels.containsKey(subscribeList[i])) {
pubsub_channels.put(subscribeList[i], new ArrayList<>());
}
pubsub_channels.get(subscribeList[i]).add(client);
}
}
3.2 取消订阅
上面介绍的是单个 Channel 的订阅,相反的如果一个客户端要取消订阅相关 Channel,则无非是找到对应的 Channel 的链表,从中删除对应的客户端,如果该客户端已经是最后一个了,则将对应 Channel 也删除。
04、模式订阅结构
模式渠道的订阅与单个渠道的订阅类似,不过服务器是将所有模式的订阅关系都保存在服务器状态的pubsub_patterns 属性里面。
与订阅单个 Channel 不同的是,pubsub_patterns 属性是一个链表,不是字典。节点的结构如下:
其实 client 属性是用来存放对应客户端信息,pattern 是用来存放客户端对应的匹配模式。
所以对应上面的 Client-06 模式匹配的结构存储如下
在pubsub_patterns链表中有一个节点,对应的客户端是 Client-06,对应的匹配模式是run*。
4.1、订阅模式
当某个客户端通过命令psubscribe 订阅对应模式的 Channel 时候,服务器会创建一个节点,并将 Client 属性设置为对应的客户端,pattern 属性设置成对应的模式规则,然后添加到链表尾部。
对应的伪代码如下:
- 创建新节点;
- 给节点的属性赋值;
- 将节点添加到链表的尾部;
4.2、退订模式
退订模式的命令是punsubscribe,客户端使用这个命令来退订一个或者多个模式 Channel。服务器接收到该命令后,会遍历pubsub_patterns链表,将匹配到的 client 和 pattern 属性的节点给删掉。这里需要判断 client 属性和 pattern 属性都合法的时候再进行删除。
伪代码如下:
遍历所有的节点,当匹配到相同 client 属性和 pattern 属性的时候就进行节点删除。
05、发布消息
发布消息比较好容易理解,当一个客户端执行了publish channelName message 命令的时候,服务器会从pubsub_channels和pubsub_patterns 两个结构中找到符合channelName 的所有 Channel,进行消息的发送。在 pubsub_channels 中只要找到对应的 Channel 的 key 然后向对应的 value 链表中的客户端发送消息就好。
06、总结
这篇文章主要给大家介绍了一下 Redis 的发布/订阅的使用方式和底层的存储结构以及部分伪代码的实现,希望对大家有帮助。
相关推荐
- 订单超时自动取消业务的 N 种实现方案,从原理到落地全解析
-
在分布式系统架构中,订单超时自动取消机制是保障业务一致性的关键组件。某电商平台曾因超时处理机制缺陷导致日均3000+订单库存锁定异常,直接损失超50万元/天。本文将从技术原理、实现细节、...
- 使用Spring Boot 3开发时,如何选择合适的分布式技术?
-
作为互联网大厂的后端开发人员,当你满怀期待地用上SpringBoot3,准备在项目中大显身手时,却发现一个棘手的问题摆在面前:面对众多分布式技术,究竟该如何选择,才能让SpringBoot...
- 数据库内存爆满怎么办?99%的程序员都踩过这个坑!
-
你的数据库是不是又双叒叕内存爆满了?!服务器监控一片红色警告,老板在群里@所有人,运维同事的电话打爆了手机...这种场景是不是特别熟悉?别慌!作为一个在数据库优化这条路上摸爬滚打了10年的老司机,今天...
- springboot利用Redisson 实现缓存与数据库双写不一致问题
-
使用了Redisson来操作Redis分布式锁,主要功能是从缓存和数据库中获取商品信息,以下是针对并发时更新缓存和数据库带来不一致问题的解决方案1.基于读写锁和删除缓存策略在并发更新场景下,...
- 外贸独立站数据库炸了?对象缓存让你起死回生
-
上周黑五,一个客户眼睁睁看着服务器CPU飙到100%——每次页面加载要查87次数据库。这让我想起2024年Pantheon的测试:Redis缓存能把WooCommerce查询速度提升20倍。跨境电商最...
- 手把手教你在 Spring Boot3 里纯编码实现自定义分布式锁
-
为什么要自己实现分布式锁?你是不是早就受够了引入各种第三方依赖时的繁琐?尤其是分布式锁这块,每次集成Redisson或者Zookeeper,都得额外维护一堆配置,有时候还会因为版本兼容问题头疼半...
- 如何设计一个支持百万级实时数据推送的WebSocket集群架构?
-
面试解答:要设计一个支持百万级实时数据推送的WebSocket集群架构,需从**连接管理、负载均衡、水平扩展、容灾恢复**四个维度切入:连接层设计-**长连接优化**:采用Netty或Und...
- Redis数据结构总结——面试最常问到的知识点
-
Redis作为主流的nosql存储,面试时经常会问到。其主要场景是用作缓存,分布式锁,分布式session,消息队列,发布订阅等等。其存储结构主要有String,List,Set,Hash,Sort...
- skynet服务的缺陷 lua死循环
-
服务端高级架构—云风的skynet这边有一个关于云风skynet的视频推荐给大家观看点击就可以观看了!skynet是一套多人在线游戏的轻量级服务端框架,使用C+Lua开发。skynet的显著优点是,...
- 七年Java开发的一路辛酸史:分享面试京东、阿里、美团后的心得
-
前言我觉得有一个能够找一份大厂的offer的想法,这是很正常的,这并不是我们的饭后谈资而是每个技术人的追求。像阿里、腾讯、美团、字节跳动、京东等等的技术氛围与技术规范度还是要明显优于一些创业型公司...
- mysql mogodb es redis数据库之间的区别
-
1.MySQL应用场景概念:关系型数据库,基于关系模型,使用表和行存储数据。优点:支持ACID事务,数据具有很高的一致性和完整性。缺点:垂直扩展能力有限,需要分库分表等方式扩展。对于复杂的查询和大量的...
- redis,memcached,nginx网络组件
-
1.理解阻塞io,非阻塞io,同步io,异步io的区别2.理解BIO和AIO的区别io多路复用只负责io检测,不负责io操作阻塞io中的write,能写多少是多少,只要写成功就返回,譬如准备写500字...
- SpringBoot+Vue+Redis实现验证码功能
-
一个小时只允许发三次验证码。一次验证码有效期二分钟。SpringBoot整合Redis...
- AWS MemoryDB 可观测最佳实践
-
AWSMemoryDB介绍AmazonMemoryDB是一种完全托管的、内存中数据存储服务,专为需要极低延迟和高吞吐量的应用程序而设计。它与Redis和Memcached相似,但具有更...
- 从0构建大型AI推荐系统:实时化引擎从工具到生态的演进
-
在AI浪潮席卷各行各业的今天,推荐系统正从幕后走向前台,成为用户体验的核心驱动力。本文将带你深入探索一个大型AI推荐系统从零起步的全过程,揭示实时化引擎如何从单一工具演进为复杂生态的关键路径。无论你是...
你 发表评论:
欢迎- 一周热门
-
-
Redis客户端 Jedis 与 Lettuce
-
高并发架构系列:Redis并发竞争key的解决方案详解
-
redis如何防止并发(redis如何防止高并发)
-
Java SE Development Kit 8u441下载地址【windows版本】
-
开源推荐:如何实现的一个高性能 Redis 服务器
-
redis安装与调优部署文档(WinServer)
-
Redis 入门 - 安装最全讲解(Windows、Linux、Docker)
-
一文带你了解 Redis 的发布与订阅的底层原理
-
Redis如何应对并发访问(redis控制并发量)
-
Oracle如何创建用户,表空间(oracle19c创建表空间用户)
-
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (83)
- php redis (97)
- redis 存储 (67)
- redis 锁 (74)
- 启动 redis (73)
- redis 时间 (60)
- redis 删除 (69)
- redis内存 (64)
- redis并发 (53)
- redis 主从 (71)
- redis同步 (53)
- redis结构 (53)
- redis 订阅 (54)
- redis 登录 (62)
- redis 面试 (58)
- redis问题 (54)
- 阿里 redis (67)
- redis的缓存 (57)
- lua redis (59)
- redis 连接池 (64)