为什么 Redis 单线程能支撑高并发?
mhr18 2024-11-04 12:43 16 浏览 0 评论
最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。
几种 I/O 模型
为什么 Redis 中要使用 I/O 多路复用这种技术呢?
首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。
Blocking I/O
先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个文件描述符(File Descriptor 以下简称 FD)进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。
这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:
阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。
I/O 多路复用
虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。
阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:
在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。
关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;
与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。
Reactor 设计模式
Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)
redis-reactor-pattern
文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 accept、read、write 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。
虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。
I/O 多路复用模块
I/O 多路复用模块封装了底层的 select、epoll、avport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。
ae-module
在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:
- static int aeApiCreate(aeEventLoop *eventLoop)
- static int aeApiResize(aeEventLoop *eventLoop, int setsize)
- static void aeApiFree(aeEventLoop *eventLoop)
- static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)
- static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)
- static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)
同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:
// select typedef struct aeApiState { fd_set rfds, wfds; fd_set _rfds, _wfds; } aeApiState; // epoll typedef struct aeApiState { int epfd; struct epoll_event *events; } aeApiState;
这些上下文信息会存储在 eventLoop 的 void *state 中,不会暴露到上层,只在当前子模块中使用。
封装 select 函数
select 可以监控 FD 的可读、可写以及出现错误的情况。
在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:
int fd = /* file descriptor */ fd_set rfds; FD_ZERO(&rfds); FD_SET(fd, &rfds) for ( ; ; ) { select(fd+1, &rfds, NULL, NULL, NULL); if (FD_ISSET(fd, &rfds)) { /* file descriptor `fd` becomes readable */ } }
- 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;
- 使用 FD_SET 将 fd 加入 rfds;
- 调用 select 方法监控 rfds 中的 FD 是否可读;
- 当 select 返回时,检查 FD 的状态并完成对应的操作。
而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds:
static int aeApiCreate(aeEventLoop *eventLoop) { aeApiState *state = zmalloc(sizeof(aeApiState)); if (!state) return -1; FD_ZERO(&state->rfds); FD_ZERO(&state->wfds); eventLoop->apidata = state; return 0; }
而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) { aeApiState *state = eventLoop->apidata; if (mask & AE_READABLE) FD_SET(fd,&state->rfds); if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds); return 0; }
整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired 数组中,并返回事件的个数:
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) { aeApiState *state = eventLoop->apidata; int retval, j, numevents = 0; memcpy(&state->_rfds,&state->rfds,sizeof(fd_set)); memcpy(&state->_wfds,&state->wfds,sizeof(fd_set)); retval = select(eventLoop->maxfd+1, &state->_rfds,&state->_wfds,NULL,tvp); if (retval > 0) { for (j = 0; j <= eventLoop->maxfd; j++) { int mask = 0; aeFileEvent *fe = &eventLoop->events[j]; if (fe->mask == AE_NONE) continue; if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds)) mask |= AE_READABLE; if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds)) mask |= AE_WRITABLE; eventLoop->fired[numevents].fd = j; eventLoop->fired[numevents].mask = mask; numevents++; } } return numevents; }
封装 epoll 函数
Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd:
static int aeApiCreate(aeEventLoop *eventLoop) { aeApiState *state = zmalloc(sizeof(aeApiState)); if (!state) return -1; state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize); if (!state->events) { zfree(state); return -1; } state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */ if (state->epfd == -1) { zfree(state->events); zfree(state); return -1; } eventLoop->apidata = state; return 0; }
在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) { aeApiState *state = eventLoop->apidata; struct epoll_event ee = {0}; /* avoid valgrind warning */ /* If the fd was already monitored for some event, we need a MOD * operation. Otherwise we need an ADD operation. */ int op = eventLoop->events[fd].mask == AE_NONE ? EPOLL_CTL_ADD : EPOLL_CTL_MOD; ee.events = 0; mask |= eventLoop->events[fd].mask; /* Merge old events */ if (mask & AE_READABLE) ee.events |= EPOLLIN; if (mask & AE_WRITABLE) ee.events |= EPOLLOUT; ee.data.fd = fd; if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1; return 0; }
由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:
typedef union epoll_data { void *ptr; int fd; /* 文件描述符 */ uint32_t u32; uint64_t u64; } epoll_data_t; struct epoll_event { uint32_t events; /* Epoll 事件 */ epoll_data_t data; };
其中保存了发生的 epoll 事件(EPOLLIN、EPOLLOUT、EPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。
aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) { aeApiState *state = eventLoop->apidata; int retval, numevents = 0; retval = epoll_wait(state->epfd,state->events,eventLoop->setsize, tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1); if (retval > 0) { int j; numevents = retval; for (j = 0; j < numevents; j++) { int mask = 0; struct epoll_event *e = state->events+j; if (e->events & EPOLLIN) mask |= AE_READABLE; if (e->events & EPOLLOUT) mask |= AE_WRITABLE; if (e->events & EPOLLERR) mask |= AE_WRITABLE; if (e->events & EPOLLHUP) mask |= AE_WRITABLE; eventLoop->fired[j].fd = e->data.fd; eventLoop->fired[j].mask = mask; } } return numevents; }
子模块的选择
因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:
#ifdef HAVE_EVPORT #include "ae_evport.c" #else #ifdef HAVE_EPOLL #include "ae_epoll.c" #else #ifdef HAVE_KQUEUE #include "ae_kqueue.c" #else #include "ae_select.c" #endif #endif #endif
因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:
redis-choose-io-function
Redis 会优先选择时间复杂度为
的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。
但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差
,并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。
总结
Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。
整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。
Reference
- Select-Man-Pages
- Reactor-Pattern
- epoll vs kqueue
相关推荐
- Docker安装详细步骤及相关环境安装配置
-
最近自己在虚拟机上搭建一个docker,将项目运行在虚拟机中。需要提前准备的工具,FinallShell(远程链接工具),VM(虚拟机-配置网络)、CentOS7(Linux操作系统-在虚拟机上安装)...
- Linux下安装常用软件都有哪些?做了一个汇总列表,你看还缺啥?
-
1.安装列表MySQL5.7.11Java1.8ApacheMaven3.6+tomcat8.5gitRedisNginxpythondocker2.安装mysql1.拷贝mysql安装文件到...
- Nginx安装和使用指南详细讲解(nginx1.20安装)
-
Nginx安装和使用指南安装1.检查并安装所需的依赖软件1).gcc:nginx编译依赖gcc环境安装命令:yuminstallgcc-c++2).pcre:(PerlCompatibleRe...
- docker之安装部署Harbor(docker安装hacs)
-
在现代软件开发和部署环境中,Harbor作为一个企业级的容器镜像仓库,提供了高效、安全的镜像管理解决方案。通过Docker部署Harbor,可以轻松构建私有镜像仓库,满足企业对镜像存储、管理和安全性...
- 成功安装 Magento2.4.3最新版教程「技术干货」
-
外贸独立站设计公司xingbell.com经过多次的反复实验,最新版的magento2.4.3在oneinstack的环境下的详细安装教程如下:一.vps系统:LinuxCentOS7.7.19...
- 【Linux】——从0到1的学习,让你熟练掌握,带你玩转Linu
-
学习Linux并掌握Java环境配置及SpringBoot项目部署是一个系统化的过程,以下是从零开始的详细指南,帮助你逐步掌握这些技能。一、Linux基础入门1.安装Linux系统选择发行版:推荐...
- cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务
-
cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务(yum选择的,时间不同,版本不同)如果对运维课程感兴趣,可以在b站上搜索我的账号:运维实战课程,可以关注我,学习更多免费的运...
- 时隔三月,参加2020秋招散招,终拿字节跳动后端开发意向书.
-
3个月前头条正式批笔试4道编程题只AC了2道,然后被刷了做了200多道还是太菜了,本来对字节不抱太大希望,毕竟后台竞争太大,而且字节招客户端开发比较多。后来看到有散招免笔试,抱着试一试的心态投了,然而...
- Redisson:Java程序员手中的“魔法锁”
-
Redisson:Java程序员手中的“魔法锁”在这个万物互联的时代,分布式系统已经成为主流。然而,随着系统的扩展,共享资源的争夺成为了一个棘手的问题。就比如你想在淘宝“秒杀”一款商品,却发现抢的人太...
- 【线上故障复盘】RPC 线程池被打满,1024个线程居然不够用?
-
1.故障背景昨天晚上,我刚到家里打开公司群,就看见群里有人讨论:线上环境出现大量RPC请求报错,异常原因:被线程池拒绝。虽然异常量很大,但是异常服务非核心服务,属于系统旁路,服务于数据核对任务,即使...
- 小红书取消大小周,有人不高兴了!
-
小红书宣布五一节假日之后,取消大小周,恢复为正常的双休,乍一看工作时长变少,按道理来说大家应该都会很开心,毕竟上班时间缩短了,但是还是有一些小红书的朋友高兴不起来,心情很复杂。因为没有了大小周,以前...
- 延迟任务的多种实现方案(延迟机制)
-
场景订单超时自动取消:延迟任务典型的使用场景是订单超时自动取消。功能精确的时间控制:延时任务的时间控制要尽量准确。可靠性:延时任务的处理要是可靠的,确保所有任务最终都能被执行。这通常要求延时任务的方案...
- 百度java面试真题(java面试题下载)
-
1、SpingBoot也有定时任务?是什么注解?在SpringBoot中使用定时任务主要有两种不同的方式,一个就是使用Spring中的@Scheduled注解,另一个则是使用第三方框架Q...
- 回归基础:访问 Kubernetes Pod(concurrent.futures访问数据库)
-
Kubernetes是一头巨大的野兽。在它开始有用之前,您需要了解许多概念。在这里,学习几种访问集群外pod的方法。Kubernetes是一头巨大的野兽。在它开始有用之前,您需要了解许多不同的...
- Spring 缓存神器 @Cacheable:3 分钟学会优化高频数据访问
-
在互联网应用中,高频数据查询(如商品详情、用户信息)往往成为性能瓶颈。每次请求都触发数据库查询,不仅增加服务器压力,还会导致响应延迟。Spring框架提供的@Cacheable注解,就像给方法加了一...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Docker安装详细步骤及相关环境安装配置
- Linux下安装常用软件都有哪些?做了一个汇总列表,你看还缺啥?
- Nginx安装和使用指南详细讲解(nginx1.20安装)
- docker之安装部署Harbor(docker安装hacs)
- 成功安装 Magento2.4.3最新版教程「技术干货」
- 【Linux】——从0到1的学习,让你熟练掌握,带你玩转Linu
- cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务
- 时隔三月,参加2020秋招散招,终拿字节跳动后端开发意向书.
- Redisson:Java程序员手中的“魔法锁”
- 【线上故障复盘】RPC 线程池被打满,1024个线程居然不够用?
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)