百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

Redis优化高并发下的秒杀性能(redis高并发解决方案)

mhr18 2024-11-04 12:43 33 浏览 0 评论

本文内容

  • 使用Redis优化高并发场景下的接口性能
  • 数据库乐观锁

随着双11的临近,各种促销活动开始变得热门起来,比较主流的有秒杀、抢优惠券、拼团等等。

涉及到高并发争抢同一个资源的主要场景有秒杀和抢优惠券。

前提

活动规则

  • 奖品数量有限,比如100个
  • 不限制参与用户数
  • 每个用户只能参与1次秒杀

活动要求

  • 不能多发,也不能少发,100个奖品要全部发出去
  • 1个用户最多抢1个奖品
  • 遵循先到先得原则,先来的用户有奖品

数据库实现

悲观锁性能太差,本文不予讨论,讨论一下使用乐观锁解决高并发问题的优缺点。

数据库结构

IDCodeUserIdCreatedAtRewardAt奖品ID奖品码用户ID创建时间中奖时间

  • 未中奖时UserId为0,RewardAt为NULL
  • 中奖时UserId为中奖用户ID,RewardAt为中奖时间

乐观锁实现

乐观锁实际上并不存在真正的锁,乐观锁是利用数据的某个字段来做的,比如本文的例子就是以UserId来实现的。

实现流程如下:

  1. 查询UserId为0的奖品,如果未找到则提示无奖品SELECT * FROM envelope WHERE user_id=0 LIMIT 1
  2. 更新奖品的用户ID和中奖时间(假设奖品ID为1,中奖用户ID为100,当前时间为2019-10-29 12:00:00),这里的user_id=0就是我们的乐观锁了。UPDATE envelope SET user_id=100, reward_at='2019-10-29 12:00:00' WHERE user_id=0 AND id=1
  3. 检测UPDATE语句的执行返回值,如果返回1证明中奖成功,否则证明该奖品被其他人抢了

为什么要添加乐观锁

正常情况下获取奖品、然后把奖品更新给指定用户是没问题的。如果不添加user_id=0时,高并发场景下会出现下面的问题:

  1. 两个用户同时查询到了1个未中奖的奖品(发生并发问题)
  2. 将奖品的中奖用户更新为用户1,更新条件只有ID=奖品ID
  3. 上述SQL执行是成功的,影响行数也是1,此时接口会返回用户1中奖
  4. 接下来将中奖用户更新为用户2,更新条件也只有ID=奖品ID
  5. 由于是同一个奖品,已经发给用户1的奖品会重新发放给用户2,此时影响行数为1,接口返回用户2也中奖
  6. 所以该奖品的最终结果是发放给用户2
  7. 用户1就会过来投诉活动方了,因为抽奖接口返回用户1中奖,但他的奖品被抢了,此时活动方只能赔钱了

添加乐观锁之后的抽奖流程

  1. 更新用户1时的条件为id=红包ID AND user_id=0 ,由于此时红包未分配给任何人,用户1更新成功,接口返回用户1中奖
  2. 当更新用户2时更新条件为id=红包ID AND user_id=0,由于此时该红包已经分配给用户1了,所以该条件不会更新任何记录,接口返回用户2中奖

乐观锁优缺点

优点

  • 性能尚可,因为无锁
  • 不会超发

缺点

  • 通常不满足“先到先得”的活动规则,一旦发生并发,就会发生未中奖的情况,此时奖品库还有奖品

压测

在MacBook Pro 2018上的压测表现如下(Golang实现的HTTP服务器,MySQL连接池大小100,Jmeter压测):

  • 500并发 500总请求数 平均响应时间331ms 发放成功数为31 吞吐量458.7/s

Redis实现

可以看到乐观锁的实现下争抢比太高,不是推荐的实现方法,下面通过Redis来优化这个秒杀业务。

Redis高性能的原因

  • 单线程 省去了线程切换开销
  • 基于内存的操作 虽然持久化操作涉及到硬盘访问,但是那是异步的,不会影响Redis的业务
  • 使用了IO多路复用

实现流程

  1. 活动开始前将数据库中奖品的code写入Redis队列中
  2. 活动进行时使用lpop弹出队列中的元素
  3. 如果获取成功,则使用UPDATE语法发放奖品UPDATE reward SET user_id=用户ID,reward_at=当前时间 WHERE code='奖品码'
  4. 如果获取失败,则当前无可用奖品,提示未中奖即可

使用Redis的情况下并发访问是通过Redis的lpop()来保证的,该方法是原子方法,可以保证并发情况下也是一个个弹出的。

压测

在MacBook Pro 2018上的压测表现如下(Golang实现的HTTP服务器,MySQL连接池大小100,Redis连接池代销100,Jmeter压测):

  • 500并发 500总请求数 平均响应时间48ms 发放成功数100 吞吐量497.0/s

结论

可以看到Redis的表现是稳定的,不会出现超发,且访问延迟少了8倍左右,吞吐量还没达到瓶颈,可以看出Redis对于高并发系统的性能提升是非常大的!接入成本也不算高,值得学习!

实验代码

// main.go
package main
import (
 "fmt"
 "github.com/go-redis/redis"
 _ "github.com/go-sql-driver/mysql"
 "github.com/jinzhu/gorm"
 "log"
 "net/http"
 "strconv"
 "time"
)
type Envelope struct {
 Id int `gorm:"primary_key"`
 Code string
 UserId int
 CreatedAt time.Time
 RewardAt *time.Time
}
func (Envelope) TableName() string {
 return "envelope"
}
func (p *Envelope) BeforeCreate() error {
 p.CreatedAt = time.Now()
 return nil
}
const (
 QueueEnvelope = "envelope"
 QueueUser = "user"
)
var (
 db *gorm.DB
 redisClient *redis.Client
)
func init() {
 var err error
 db, err = gorm.Open("mysql", "root:root@tcp(localhost:3306)/test?charset=utf8&parseTime=True&loc=Local")
 if err != nil {
 log.Fatal(err)
 }
 if err = db.DB().Ping(); err != nil {
 log.Fatal(err)
 }
 db.DB().SetMaxOpenConns(100)
 fmt.Println("database connected. pool size 10")
}
func init() {
 redisClient = redis.NewClient(&redis.Options{
 Addr: "localhost:6379",
 DB: 0,
 PoolSize: 100,
 })
 if _, err := redisClient.Ping().Result(); err != nil {
 log.Fatal(err)
 }
 fmt.Println("redis connected. pool size 100")
}
// 读取Code写入Queue
func init() {
 envelopes := make([]Envelope, 0, 100)
 if err := db.Debug().Where("user_id=0").Limit(100).Find(&envelopes).Error; err != nil {
 log.Fatal(err)
 }
 if len(envelopes) != 100 {
 log.Fatal("不足100个奖品")
 }
 for i := range envelopes {
 if err := redisClient.LPush(QueueEnvelope, envelopes[i].Code).Err(); err != nil {
 log.Fatal(err)
 }
 }
 fmt.Println("load 100 envelopes")
}
func main() {
 http.HandleFunc("/envelope", func(w http.ResponseWriter, r *http.Request) {
 uid := r.Header.Get("x-user-id")
 if uid == "" {
 w.WriteHeader(401)
 _, _ = fmt.Fprint(w, "UnAuthorized")
 return
 }
 uidValue, err := strconv.Atoi(uid)
 if err != nil {
 w.WriteHeader(400)
 _, _ = fmt.Fprint(w, "Bad Request")
 return
 }
 // 检测用户是否抢过了
 if result, err := redisClient.HIncrBy(QueueUser, uid, 1).Result(); err != nil || result != 1 {
 w.WriteHeader(429)
 _, _ = fmt.Fprint(w, "Too Many Request")
 return
 }
 // 检测是否在队列中
 code, err := redisClient.LPop(QueueEnvelope).Result()
 if err != nil {
 w.WriteHeader(200)
 _, _ = fmt.Fprint(w, "No Envelope")
 return
 }
 // 发放红包
 envelope := &Envelope{}
 err = db.Where("code=?", code).Take(&envelope).Error
 if err == gorm.ErrRecordNotFound {
 w.WriteHeader(200)
 _, _ = fmt.Fprint(w, "No Envelope")
 return
 }
 if err != nil {
 w.WriteHeader(500)
 _, _ = fmt.Fprint(w, err)
 return
 }
 now := time.Now()
 envelope.UserId = uidValue
 envelope.RewardAt = &now
 rowsAffected := db.Where("user_id=0").Save(&envelope).RowsAffected // 添加user_id=0来验证Redis是否真的解决争抢问题
 if rowsAffected == 0 {
 fmt.Printf("发生争抢. id=%d\n", envelope.Id)
 w.WriteHeader(500)
 _, _ = fmt.Fprintf(w, "发生争抢. id=%d\n", envelope.Id)
 return
 }
 _, _ = fmt.Fprint(w, envelope.Code)
 })
 fmt.Println("listen on 8080")
 fmt.Println(http.ListenAndServe(":8080", nil))
}

相关推荐

【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...

Pure Storage推出统一数据管理云平台及新闪存阵列

PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...

对Java学习的10条建议(对java课程的建议)

不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...

SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!

官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...

JDK21有没有什么稳定、简单又强势的特性?

佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...

「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了

在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...

Java面试题及答案最全总结(2025版)

大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...

数据库日常运维工作内容(数据库日常运维 工作内容)

#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...

分布式之系统底层原理(上)(底层分布式技术)

作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...

oracle 死锁了怎么办?kill 进程 直接上干货

1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...

SpringBoot 各种分页查询方式详解(全网最全)

一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...

《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略

《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...

LoadRunner(loadrunner录制不到脚本)

一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...

Redis数据类型介绍(redis 数据类型)

介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...

RMAN备份监控及优化总结(rman备份原理)

今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...

取消回复欢迎 发表评论: