百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

Redis5.0数据淘汰策略详解(最新版本,面试常问)

mhr18 2024-10-24 11:11 28 浏览 0 评论

作为一个内存数据库,redis在内存空间不足的时候,为了保证命中率,就会选择一定的数据淘汰策略,这篇文章主要讲解常见的几种内存淘汰策略。和我们操作系统中的页面置换算法类似。

一、参数设置

我们的redis数据库的最大缓存、主键失效、淘汰机制等参数都是通过配置文件来配置的。这个文件是我们的redis.config文件,我们的redis装在了/usr/local/redis目录下,所以配置文件也在这里。首先说明一下我使用的redis是5。也是目前最新的版本。

1、最大内存参数

关键的配置就在最下面,我们可以设置多少个字节。默认是关闭的。

2、内存淘汰策略

不同于之前的版本,redis5.0为我们提供了八个不同的内存置换策略。很早之前提供了6种。

(1)volatile-lru:从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。

(2)volatile-ttl:从已设置过期时间的数据集中挑选将要过期的数据淘汰。

(3)volatile-random:从已设置过期时间的数据集中任意选择数据淘汰。

(4)volatile-lfu:从已设置过期时间的数据集挑选使用频率最低的数据淘汰。

(5)allkeys-lru:从数据集中挑选最近最少使用的数据淘汰

(6)allkeys-lfu:从数据集中挑选使用频率最低的数据淘汰。

(7)allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

(8) no-enviction(驱逐):禁止驱逐数据,这也是默认策略。意思是当内存不足以容纳新入数据时,新写入操作就会报错,请求可以继续进行,线上任务也不能持续进行,采用no-enviction策略可以保证数据不被丢失。

这八种大体上可以分为4中,lru、lfu、random、ttl。

二、淘汰机制的实现

1、删除失效主键

既然是淘汰,那就需要把这些数据给删除,然后保存新的。Redis 删除失效主键的方法主要有两种:

(1)消极方法(passive way),在主键被访问时如果发现它已经失效,那么就删除它。redis在实现GET、MGET、HGET、LRANGE等所有涉及到读取数据的命令时都会调用 expireIfNeeded,它存在的意义就是在读取数据之前先检查一下它有没有失效,如果失效了就删除它。

expireIfNeeded函数中调用的另外一个函数propagateExpire,这个函数用来在正式删除失效主键,并且广播告诉其他地方,目的地有俩:AOF文件,将删除失效主键的这一操作以DEL Key的标准命令格式记录下来;另一个就是发送到当前Redis服务器的所有Slave,同样将删除失效主键的这一操作以DEL Key的标准命令格式告知这些Slave删除各自的失效主键。

(2)积极方法(active way),周期性地探测,发现失效就删除。消极方法的缺点是,如果key 迟迟不被访问,就会占用很多内存空间,所以才有积极方式。

(3)主动删除:当内存超过maxmemory限定时,触发主动清理策略,该策略由启动参数的配置决定

主键具体的失效时间全部都维护在expires这个字典表中:

2、淘汰数据的量

既然是淘汰数据,那么淘汰多少合适呢?

为了避免频繁的触发淘汰策略,每次会淘汰掉一批数据,淘汰的数据的大小其实是和置换的大小来确定的,如果置换的数据量大,淘汰的肯定也多。

3、置换策略是如何工作

理解置换策略的执行方式是非常重要的,比如:

(1)客户端执行一条新命令,导致数据库需要增加数据(比如set key value)

(2)Redis会检查内存使用,如果内存使用超过maxmemory,就会按照置换策略删除一些key

(3)新的命令执行成功

OK,redis数据淘汰策略就先到这,版本使用的是最新的5。可能会和3不同。


相关推荐

Redis合集-使用benchmark性能测试

采用开源Redis的redis-benchmark工具进行压测,它是Redis官方的性能测试工具,可以有效地测试Redis服务的性能。本次测试使用Redis官方最新的代码进行编译,详情请参见Redis...

Java简历总被已读不回?面试挂到怀疑人生?这几点你可能真没做好

最近看了几十份简历,发现大部分人不是技术差,而是不会“卖自己”——一、简历死穴:你写的不是经验,是岗位说明书!反面教材:ד使用SpringBoot开发项目”ד负责用户模块功能实现”救命写法:...

redission YYDS(redission官网)

每天分享一个架构知识Redission是一个基于Redis的分布式Java锁框架,它提供了各种锁实现,包括可重入锁、公平锁、读写锁等。使用Redission可以方便地实现分布式锁。red...

从数据库行锁到分布式事务:电商库存防超卖的九重劫难与破局之道

2023年6月18日我们维护的电商平台在零点刚过3秒就遭遇了严重事故。监控大屏显示某爆款手机SKU_IPHONE13_PRO_MAX在库存仅剩500台时,订单系统却产生了1200笔有效订单。事故复盘发...

SpringBoot系列——实战11:接口幂等性的形而上思...

欢迎关注、点赞、收藏。幂等性不仅是一种技术需求,更是数字文明对确定性追求的体现。在充满不确定性的网络世界中,它为我们建立起可依赖的存在秩序,这或许正是技术哲学最深刻的价值所在。幂等性的本质困境在支付系...

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享在高流量场景下。首先,我需要回忆一下常见的优化策略,比如负载均衡、缓存、数据库优化、微服务拆分这些。不过,可能还需要考虑用户的具体情况,比...

Java面试题: 项目开发中的有哪些成长?该如何回答

在Java面试中,当被问到“项目中的成长点”时,面试官不仅想了解你的技术能力,更希望看到你的问题解决能力、学习迭代意识以及对项目的深度思考。以下是回答的策略和示例,帮助你清晰、有说服力地展示成长点:一...

互联网大厂后端必看!Spring Boot 如何实现高并发抢券逻辑?

你有没有遇到过这样的情况?在电商大促时,系统上线了抢券活动,结果活动刚一开始,服务器就不堪重负,出现超卖、系统崩溃等问题。又或者用户疯狂点击抢券按钮,最后却被告知无券可抢,体验极差。作为互联网大厂的后...

每日一题 |10W QPS高并发限流方案设计(含真实代码)

面试场景还原面试官:“如果系统要承载10WQPS的高并发流量,你会如何设计限流方案?”你:“(稳住,我要从限流算法到分布式架构全盘分析)…”一、为什么需要限流?核心矛盾:系统资源(CPU/内存/数据...

Java面试题:服务雪崩如何解决?90%人栽了

服务雪崩是指微服务架构中,由于某个服务出现故障,导致故障在服务之间不断传递和扩散,最终造成整个系统崩溃的现象。以下是一些解决服务雪崩问题的常见方法:限流限制请求速率:通过限流算法(如令牌桶算法、漏桶算...

面试题官:高并发经验有吗,并发量多少,如何回复?

一、有实际高并发经验(建议结构)直接量化"在XX项目中,系统日活用户约XX万,核心接口峰值QPS达到XX,TPS处理能力为XX/秒。通过压力测试验证过XX并发线程下的稳定性。"技术方案...

瞬时流量高并发“保命指南”:这样做系统稳如泰山,老板跪求加薪

“系统崩了,用户骂了,年终奖飞了!”——这是多少程序员在瞬时大流量下的真实噩梦?双11秒杀、春运抢票、直播带货……每秒百万请求的冲击,你的代码扛得住吗?2025年了,为什么你的系统一遇高并发就“躺平”...

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。比如上周有个小伙伴找我,五年经验但简历全是'参与系统设计''优化接口性能'这种空话。我就问他:你做的秒杀...

PHP技能评测(php等级考试)

公司出了一些自我评测的PHP题目,现将题目和答案记录于此,以方便记忆。1.魔术函数有哪些,分别在什么时候调用?__construct(),类的构造函数__destruct(),类的析构函数__cal...

你的简历在HR眼里是青铜还是王者?

你的简历在HR眼里是青铜还是王者?兄弟,简历投了100份没反应?面试总在第三轮被刷?别急着怀疑人生,你可能只是踩了这些"隐形求职雷"。帮3630+程序员改简历+面试指导和处理空窗期时间...

取消回复欢迎 发表评论: