快速入门 MongoDB,掌握这些知识刚刚好
mhr18 2024-11-30 12:30 15 浏览 0 评论
作者:MacroZheng 链接:https://juejin.im/post/5eb4043cf265da7bf5368276
虽说现在关系型数据库还是主流,但是面对某些需求的时候,需要非关系型数据库来补充它,学习一个主流的NoSQL数据库还是很有必要的。MongoDB是一个功能丰富的NoSQL数据库,本文整理了它最常用的部分形成了这篇入门教程,希望对大家有所帮助。
简介
MongoDB是一个基于分布式文件存储的数据库。由C++语言编写,旨在为WEB应用提供可扩展的高性能数据存储解决方案。MongoDB是一个介于关系型数据库和非关系型数据库之间的产品,是非关系型数据库当中功能最丰富,最像关系型数据库的。
安装
以前写的MongoDB安装教程是基于3.2版本的,发现有的朋友使用新版本安装有问题,这次我们使用最新版本再来安装一次,本文所使用的MongoDB版本为4.2.5,总的来说,新版本的安装更简单了。
Windows下的安装
- 下载MongoDB安装包,选择Windows x64版本安装,下载地址:www.mongodb.com/download-ce…
- 运行MongoDB安装包并选择自定义安装,设置好安装路径;
- 配置MongoDB,让MongoDB作为服务运行,并配置好数据目录和日志目录;
- 取消MongoDB Compass的安装选项(不取消安装极慢),需要可自行安装;
- 双击mongo.exe可以运行MongoDB自带客户端,操作MongoDB;
- 连接成功后会显示如下信息;
- 如果需要移除MongoDB服务,只需使用管理员权限运行cmd工具,并输入如下命令。
sc.exe delete MongoDB
Linux下的安装
- 下载MongoDB的Docker镜像;
docker pull mongo:4.2.5
- 使用Docker命令启动MongoDB服务;
docker run -p 27017:27017 --name mongo \
-v /mydata/mongo/db:/data/db \
-d mongo:4.2.5
- 有时候我们需要为MongoDB设置账号,可以使用如下命令启动;
docker run -p 27017:27017 --name mongo \
-v /mydata/mongo/db:/data/db \
-d mongo:4.2.5 --auth
- 然后我们需要进入容器中的MongoDB客户端;
docker exec -it mongo mongo
- 之后在admin集合中创建一个账号用于连接,这里创建的是基于root角色的超级管理员帐号;
use admin
db.createUser({
user: 'mongoadmin',
pwd: 'secret',
roles: [ { role: "root", db: "admin" } ] });
- 创建完成后验证是否可以登录;
db.auth("mongoadmin","secret")
- 整个账号创建过程可以参考下图。
客户端工具
MongoDB的客户端工具有很多,上面没安装的MongoDB Compass就是其中之一,另外Navicat 15版本也有MongoDB的管理功能。这里我们使用的是一款免费的客户端工具Robo 3T(以前叫Robomongo)。
- 首先下载客户端工具,下载地址:robomongo.org/download
- 下载完成后解压,双击robo3t.exe即可使用;
- 之后创建一个到MongoDB的连接;
- 创建连接成功以后,就可以操作MongoDB了。
相关概念
MongoDB是非关系型数据库当中最像关系型数据库的,所以我们通过它与关系型数据库的对比,来了解下它的概念。
SQL概念 MongoDB概念 解释/说明 database database 数据库 table collection 数据库表/集合 row document 数据记录行/文档 column field 数据字段/域 index index 索引 primary key primary key 主键,MongoDB自动将_id字段设置为主键
数据库操作
- 创建数据库,使用use命令去创建数据库,当插入第一条数据时会创建数据库,例如创建一个test数据库;
> use test
switched to db test
> db.article.insert({name:"MongoDB 教程"})
WriteResult({ "nInserted" : 1 })
> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
test 0.000GB
- 删除数据库,使用db对象中的dropDatabase()方法来删除;
> db.dropDatabase()
{ "dropped" : "test", "ok" : 1 }
> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
集合操作
- 创建集合,使用db对象中的createCollection()方法来创建集合,例如创建一个article集合;
> use test
switched to db test
> db.createCollection("article")
{ "ok" : 1 }
> show collections
article
- 删除集合,使用collection对象的drop()方法来删除集合,例如删除一个article集合;
> db.article.drop()
true
> show collections
文档操作
上面的数据库和集合操作是在MongoDB的客户端中进行的,下面的文档操作都是在Robomongo中进行的。
插入文档
- MongoDB通过collection对象的insert()方法向集合中插入文档,语法如下;
db.collection.insert(document)
- 使用collection对象的insert()方法来插入文档,例如插入一个article文档;
db.article.insert({title: 'MongoDB 教程',
description: 'MongoDB 是一个 Nosql 数据库',
by: 'Andy',
url: 'https://www.mongodb.com/',
tags: ['mongodb', 'database', 'NoSQL'],
likes: 100
})
- 使用collection对象的find()方法可以获取文档,例如获取所有的article文档;
db.article.find({})
{
"_id" : ObjectId("5e9943661379a112845e4056"),
"title" : "MongoDB 教程",
"description" : "MongoDB 是一个 Nosql 数据库",
"by" : "Andy",
"url" : "https://www.mongodb.com/",
"tags" : [
"mongodb",
"database",
"NoSQL"
],
"likes" : 100.0
}
更新文档
- MongoDB通过collection对象的update()来更新集合中的文档,语法如下;
db.collection.update(
<query>,
<update>,
{
multi: <boolean>
}
)
# query:修改的查询条件,类似于SQL中的WHERE部分
# update:更新属性的操作符,类似与SQL中的SET部分
# multi:设置为true时会更新所有符合条件的文档,默认为false只更新找到的第一条
- 将title为MongoDB 教程的所有文档的title修改为MongoDB;
db.article.update({'title':'MongoDB 教程'},{$set:{'title':'MongoDB'}},{multi:true})
- 除了update()方法以外,save()方法可以用来替换已有文档,语法如下;
db.collection.save(document)
- 这次我们将ObjectId为5e9943661379a112845e4056的文档的title改为MongoDB 教程;
db.article.save({
"_id" : ObjectId("5e9943661379a112845e4056"),
"title" : "MongoDB 教程",
"description" : "MongoDB 是一个 Nosql 数据库",
"by" : "Andy",
"url" : "https://www.mongodb.com/",
"tags" : [
"mongodb",
"database",
"NoSQL"
],
"likes" : 100.0
})
删除文档
- MongoDB通过collection对象的remove()方法来删除集合中的文档,语法如下;
db.collection.remove(
<query>,
{
justOne: <boolean>
}
)
# query:删除的查询条件,类似于SQL中的WHERE部分
# justOne:设置为true只删除一条记录,默认为false删除所有记录
- 删除title为MongoDB 教程的所有文档;
db.article.remove({'title':'MongoDB 教程'})
查询文档
- MongoDB通过collection对象的find()方法来查询文档,语法如下;
db.collection.find(query, projection)
# query:查询条件,类似于SQL中的WHERE部分
# projection:可选,使用投影操作符指定返回的键
- 查询article集合中的所有文档;
db.article.find()
/* 1 */
{
"_id" : ObjectId("5e994dcb1379a112845e4057"),
"title" : "MongoDB 教程",
"description" : "MongoDB 是一个 Nosql 数据库",
"by" : "Andy",
"url" : "https://www.mongodb.com/",
"tags" : [
"mongodb",
"database",
"NoSQL"
],
"likes" : 50.0
}
/* 2 */
{
"_id" : ObjectId("5e994df51379a112845e4058"),
"title" : "Elasticsearch 教程",
"description" : "Elasticsearch 是一个搜索引擎",
"by" : "Ruby",
"url" : "https://www.elastic.co/cn/",
"tags" : [
"elasticearch",
"database",
"NoSQL"
],
"likes" : 100.0
}
/* 3 */
{
"_id" : ObjectId("5e994e111379a112845e4059"),
"title" : "Redis 教程",
"description" : "Redis 是一个key-value数据库",
"by" : "Andy",
"url" : "https://redis.io/",
"tags" : [
"redis",
"database",
"NoSQL"
],
"likes" : 150.0
}
- MongoDB中的条件操作符,通过与SQL语句的对比来了解下;
操作 格式 SQL中的类似语句 等于 {<key>:<value>} where title = 'MongoDB 教程' 小于 {<key>:{$lt:<value>}} where likes < 50 小于或等于 {<key>:{$lte:<value>}} where likes <= 50 大于 {<key>:{$gt:<value>}} where likes > 50 大于或等于 {<key>:{$gte:<value>}} where likes >= 50 不等于 {<key>:{$ne:<value>}} where likes != 50
- 条件查询,查询title为MongoDB 教程的所有文档;
db.article.find({'title':'MongoDB 教程'})
- 条件查询,查询likes大于50的所有文档;
db.article.find({'likes':{$gt:50}})
- AND条件可以通过在find()方法传入多个键,以逗号隔开来实现,例如查询title为MongoDB 教程并且by为Andy的所有文档;
db.article.find({'title':'MongoDB 教程','by':'Andy'})
- OR条件可以通过使用$or操作符实现,例如查询title为Redis 教程或MongoDB 教程的所有文档;
db.article.find({$or:[{"title":"Redis 教程"},{"title": "MongoDB 教程"}]})
- AND 和 OR条件的联合使用,例如查询likes大于50,并且title为Redis 教程或者"MongoDB 教程的所有文档。
db.article.find({"likes": {$gt:50}, $or: [{"title": "Redis 教程"},{"title": "MongoDB 教程"}]})
其他操作
Limit与Skip操作
- 读取指定数量的文档,可以使用limit()方法,语法如下;
db.collection.find().limit(NUMBER)
- 只查询article集合中的2条数据;
db.article.find().limit(2)
- 跳过指定数量的文档来读取,可以使用skip()方法,语法如下;
db.collection.find().limit(NUMBER).skip(NUMBER)
- 从第二条开始,查询article集合中的2条数据;
db.article.find().limit(2).skip(1)
排序
- 在MongoDB中使用sort()方法对数据进行排序,sort()方法通过参数来指定排序的字段,并使用1和-1来指定排序方式,1为升序,-1为降序;
db.collection.find().sort({KEY:1})
- 按article集合中文档的likes字段降序排列;
db.article.find().sort({likes:-1})
索引
- 索引通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条件的记录。
- MongoDB使用createIndex()方法来创建索引,语法如下;
db.collection.createIndex(keys, options)
# background:建索引过程会阻塞其它数据库操作,设置为true表示后台创建,默认为false
# unique:设置为true表示创建唯一索引
# name:指定索引名称,如果没有指定会自动生成
- 给title和description字段创建索引,1表示升序索引,-1表示降序索引,指定以后台方式创建;
db.article.createIndex({"title":1,"description":-1}, {background: true})
- 查看article集合中已经创建的索引;
db.article.getIndexes()
/* 1 */
[
{
"v" : 2,
"key" : {
"_id" : 1
},
"name" : "_id_",
"ns" : "test.article"
},
{
"v" : 2,
"key" : {
"title" : 1.0,
"description" : -1.0
},
"name" : "title_1_description_-1",
"ns" : "test.article",
"background" : true
}
]
聚合
- MongoDB中的聚合使用aggregate()方法,类似于SQL中的group by语句,语法如下;
db.collection.aggregate(AGGREGATE_OPERATION)
- 聚合中常用操作符如下;
操作符 描述 $sum 计算总和 $avg 计算平均值 $min 计算最小值 $max 计算最大值
- 根据by字段聚合文档并计算文档数量,类似与SQL中的count()函数;
db.article.aggregate([{$group : {_id : "$by", sum_count : {$sum : 1}}}])
/* 1 */
{
"_id" : "Andy",
"sum_count" : 2.0
}
/* 2 */
{
"_id" : "Ruby",
"sum_count" : 1.0
}
- 根据by字段聚合文档并计算likes字段的平局值,类似与SQL中的avg()语句;
db.article.aggregate([{$group : {_id : "$by", avg_likes : {$avg : "$likes"}}}])
/* 1 */
{
"_id" : "Andy",
"avg_likes" : 100.0
}
/* 2 */
{
"_id" : "Ruby",
"avg_likes" : 100.0
}
正则表达式
- MongoDB使用$regex操作符来设置匹配字符串的正则表达式,可以用来模糊查询,类似于SQL中的like操作;
- 例如查询title中包含教程的文档;
db.article.find({title:{$regex:"教程"}})
- 不区分大小写的模糊查询,使用$options操作符;
db.article.find({title:{$regex:"elasticsearch",$options:"$i"}})
结合SpringBoot使用
具体参考:《mall整合Mongodb实现文档操作》
整理了几百本各类技术电子书相送 ,嘘~,「免费」 送给小伙伴们,私信或者评论【666】自行领取。和一些小伙伴们建了一个技术交流群,一起探讨技术、分享技术资料,旨在共同学习进步。
相关推荐
- 使用 Docker 部署 Java 项目(通俗易懂)
-
前言:搜索镜像的网站(推荐):DockerDocs1、下载与配置Docker1.1docker下载(这里使用的是Ubuntu,Centos命令可能有不同)以下命令,默认不是root用户操作,...
- Spring Boot 3.3.5 + CRaC:从冷启动到秒级响应的架构实践与踩坑实录
-
去年,我们团队负责的电商订单系统因扩容需求需在10分钟内启动200个Pod实例。当运维组按下扩容按钮时,传统SpringBoot应用的冷启动耗时(平均8.7秒)直接导致流量洪峰期出现30%的请求超时...
- 《github精选系列》——SpringBoot 全家桶
-
1简单总结1SpringBoot全家桶简介2项目简介3子项目列表4环境5运行6后续计划7问题反馈gitee地址:https://gitee.com/yidao620/springbo...
- Nacos简介—1.Nacos使用简介
-
大纲1.Nacos的在服务注册中心+配置中心中的应用2.Nacos2.x最新版本下载与目录结构3.Nacos2.x的数据库存储与日志存储4.Nacos2.x服务端的startup.sh启动脚...
- spring-ai ollama小试牛刀
-
序本文主要展示下spring-aiollama的使用示例pom.xml<dependency><groupId>org.springframework.ai<...
- SpringCloud系列——10Spring Cloud Gateway网关
-
学习目标Gateway是什么?它有什么作用?Gateway中的断言使用Gateway中的过滤器使用Gateway中的路由使用第1章网关1.1网关的概念简单来说,网关就是一个网络连接到另外一个网络的...
- Spring Boot 自动装配原理剖析
-
前言在这瞬息万变的技术领域,比了解技术的使用方法更重要的是了解其原理及应用背景。以往我们使用SpringMVC来构建一个项目需要很多基础操作:添加很多jar,配置web.xml,配置Spr...
- 疯了!Spring 再官宣惊天大漏洞
-
Spring官宣高危漏洞大家好,我是栈长。前几天爆出来的Spring漏洞,刚修复完又来?今天愚人节来了,这是和大家开玩笑吗?不是的,我也是猝不及防!这个玩笑也开的太大了!!你之前看到的这个漏洞已...
- 「架构师必备」基于SpringCloud的SaaS型微服务脚手架
-
简介基于SpringCloud(Hoxton.SR1)+SpringBoot(2.2.4.RELEASE)的SaaS型微服务脚手架,具备用户管理、资源权限管理、网关统一鉴权、Xss防跨站攻击、...
- SpringCloud分布式框架&分布式事务&分布式锁
-
总结本文承接上一篇SpringCloud分布式框架实践之后,进一步实践分布式事务与分布式锁,其中分布式事务主要是基于Seata的AT模式进行强一致性,基于RocketMQ事务消息进行最终一致性,分布式...
- SpringBoot全家桶:23篇博客加23个可运行项目让你对它了如指掌
-
SpringBoot现在已经成为Java开发领域的一颗璀璨明珠,它本身是包容万象的,可以跟各种技术集成。本项目对目前Web开发中常用的各个技术,通过和SpringBoot的集成,并且对各种技术通...
- 开发好物推荐12之分布式锁redisson-sb
-
前言springboot开发现在基本都是分布式环境,分布式环境下分布式锁的使用必不可少,主流分布式锁主要包括数据库锁,redis锁,还有zookepper实现的分布式锁,其中最实用的还是Redis分...
- 拥抱Kubernetes,再见了Spring Cloud
-
相信很多开发者在熟悉微服务工作后,才发现:以为用SpringCloud已经成功打造了微服务架构帝国,殊不知引入了k8s后,却和CloudNative的生态发展脱轨。从2013年的...
- Zabbix/J监控框架和Spring框架的整合方法
-
Zabbix/J是一个Java版本的系统监控框架,它可以完美地兼容于Zabbix监控系统,使得开发、运维等技术人员能够对整个业务系统的基础设施、应用软件/中间件和业务逻辑进行全方位的分层监控。Spri...
- SpringBoot+JWT+Shiro+Mybatis实现Restful快速开发后端脚手架
-
作者:lywJee来源:cnblogs.com/lywJ/p/11252064.html一、背景前后端分离已经成为互联网项目开发标准,它会为以后的大型分布式架构打下基础。SpringBoot使编码配置...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)