百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

mysql总结笔记-006-表空间释放,count(*)效率

mhr18 2024-11-20 18:47 23 浏览 0 评论

1 为什么表数据删掉一半,表文件大小不变?

InnoDB 引擎讨论


一个 InnoDB 表包含两部分,即:表结构定义和数据。在 MySQL 8.0 版本以前,表结构是存在以.frm 为后缀的文件里。而 MySQL 8.0 版本,则已经允许把表结构定义放在系统数据表中了。



1.1 表结构和表数据如何存放?

表数据既可以存在共享表空间里,也可以是单独的文件。这个行为是由参数 innodb_file_per_table 控制的:


1. 这个参数设置为 OFF 表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起;

2. 这个参数设置为 ON 表示的是,每个 InnoDB 表数据存储在一个以 .ibd 为后缀的文件中。表结构和表数据分开存放。

从 MySQL 5.6.6 版本开始,它的默认值就是 ON 了。


innodb_file_per_table 设置为 ON,是推荐做法,我们接下来的讨论都是基于这个设置展开的

我们在删除整个表的时候,可以使用 drop table 命令回收表空间。但是,我们遇到的更多的删除数据的场景是删除某些行,这时就遇到了问题:表中的数据被删除了,但是表空间却没有被回收。


1.2 数据删除流程

假设,我们要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。

InnoDB 的数据是按页存储的,那么如果我们删掉了一个数据页上的所有记录,会怎么样?答案是,整个数据页就可以被复用了。


1.2.1 数据页的复用跟记录的复用是不同的

1 记录的复用,只限于符合范围条件的数据。比如上面的这个例子,R4 这条记录被删除后,如果插入一个 ID 是 400 的行,可以直接复用这个空间。但如果插入的是一个 ID 是 800 的行,就不能复用这个位置了。

2 当整个页从 B+ 树里面摘掉以后,可以复用到任何位置。如果将数据页 page A 上的所有记录删除以后,page A 会被标记为可复用。这时候如果要插入一条 ID=50 的记录需要使用新页的时候,page A 是可以被复用的。


如果我们用 delete 命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。

delete 命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过 delete 命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。


1.2.2 删除,插入,更新索引值都会造成空洞

如果数据是按照索引递增顺序插入的,那么索引是紧凑的。但如果数据是随机插入的,就可能造成索引的数据页分裂。

假设图 1 中 page A 已经满了,这时我要再插入一行数据,会怎样呢?

可以看到,由于 page A 满了,再插入一个 ID 是 550 的数据时,就不得不再申请一个新的页面 page B 来保存数据了。页分裂完成后,page A 的末尾就留下了空洞(注意:实际上,可能不止 1 个记录的位置是空洞)。另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。


造成空洞原因:插入,删除,更新索引上的值。经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。而重建表,就可以达到这样的目的。


1.3 重建表


如果你现在有一个表 A,需要做空间收缩,为了把表中存在的空洞去掉,你可以怎么做呢?

笨办法:新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地从表 A 里读出来再插入到表 B 中。由于表 B 是新建的表,所以表 A 主键索引上的空洞,在表 B 中就都不存在了。用表 B 替换 A,从效果上看,就起到了收缩表 A 空间的作用


使用 alter table A engine=InnoDB 命令来重建表。在 MySQL 5.5 版本之前,这个命令的执行流程跟我们前面描述的差不多,区别只是这个临时表 B 不需要你自己创建,MySQL 会自动完成转存数据、交换表名、删除旧表的操作。

图3

显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表 A 的话,就会造成数据丢失。因此,在整个 DDL 过程中,表 A 中不能有更新。也就是说,这个 DDL 不是 Online 的。


而在MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。

我给你简单描述一下引入了 Online DDL 之后,重建表的流程:

图4 Online DDL

1. 建立一个临时文件,扫描表 A 主键的所有数据页;

2. 用数据页中表 A 的记录生成 B+ 树,存储到临时文件中;

3. 生成临时文件的过程中,将所有对 A 的操作记录在一个日志文件(row log)中,对应的是图中 state2 的状态;

4. 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 A 相同的数据文件,对应的就是图中 state3 的状态;

5. 用临时文件替换表 A 的数据文件。



特别注意:重建方法都会扫描原表数据和构建临时文件。对于很大的表来说,这个操作是很消耗 IO 和 CPU 资源的。因此,如果是线上服务,你要很小心地控制操作时间。如果想要比较安全的操作的话,我推荐你使用 GitHub 开源的 gh-ost 来做。https://www.cnblogs.com/zhoujinyi/p/9187421.html


1.4 Online 和 inplace

在图 3 中,我们把表 A 中的数据导出来的存放位置叫作 tmp_table。这是一个临时表,是在 server 层创建的。在图 4 中,根据表 A 重建出来的数据是放在“tmp_file”里的,这个临时文件是 InnoDB 在内部创建出来的。整个 DDL 过程都在 InnoDB 内部完成。对于 server 层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。


如果你有一个 1TB 的表,现在磁盘间是 1.2TB,能不能做一个 inplace 的 DDL 呢?

答案是不能。因为,tmp_file 也是要占用临时空间的。


我们重建表的这个语句 alter table t engine=InnoDB,其实隐含的意思是:

alter table t engine=innodb,ALGORITHM=inplace;

跟 inplace 对应的就是拷贝表的方式了,用法是:

alter table t engine=innodb,ALGORITHM=copy;

当你使用 ALGORITHM=copy 的时候,表示的是强制拷贝表,对应的流程就是图 3 的操作过程。


inplace 跟 Online 是不是就是一个意思?其实不是的,只是在重建表这个逻辑中刚好是这样而已。

比如,如果我要给 InnoDB 表的一个字段加全文索引,写法是:alter table t add FULLTEXT(field_name);这个过程是 inplace 的,但会阻塞增删改操作,是非 Online 的。


如果说这两个逻辑之间的关系是什么的话,可以概括为:

1. DDL 过程如果是 Online 的,就一定是 inplace 的;

2. 反过来未必,也就是说 inplace 的 DDL,有可能不是 Online 的。截止到 MySQL 8.0,添加全文索引(FULLTEXT index)和空间索引 (SPATIAL index) 就属于这种情况。


使用 optimize table、analyze table 和 alter table 这三种方式区别

从 MySQL 5.6 版本开始,alter table t engine = InnoDB(也就是 recreate)默认的就是上面图 4 的流程了;

analyze table t 其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了 MDL 读锁;

optimize table t 等于 recreate+analyze。


小结

如果要收缩一个表,只是 delete 掉表里面不用的数据的话,表文件的大小是不会变的,你还要通过 alter table 命令重建表,才能达到表文件变小的目的。我跟你介绍了重建表的两种实现方式,Online DDL 的方式是可以考虑在业务低峰期使用的,而 MySQL 5.5 及之前的版本,这个命令是会阻塞 DML 的,这个你需要特别小心。



Truncate 会释放表空间吗?

Truncate 可以理解为drop+create


如果将 alter 操作显式的放到事务里 ,事务不提交 , 另一个事务查询的时候会查询到alter 操作后的表结构 , 比如新增了一个字段。这个是什么原因 ,是否打破了 mvcc 的定义呢?

好问题 , 不过alter table 语句会默认提交前面的事务,然后自己独立执行、


optimize table t 等于 recreate+analyze

老师请教个问题recreate出来应该是几乎全新的,analyze的必要性?

作者回复: 好问题,这个得是比较极端的情况下才有必要,所以我比较喜欢直接用alter



1.5 思考题

假设现在有人碰到了一个“想要收缩表空间,结果适得其反”的情况,看上去是这样的:

1. 一个表 t 文件大小为 1TB;

2. 对这个表执行 alter table t engine=InnoDB;

3. 发现执行完成后,空间不仅没变小,还稍微大了一点儿,比如变成了 1.01TB。


(1)这个表,本身就已经没有空洞的了,比如说刚刚做过一次重建表操作。在 DDL 期间,如果刚好有外部的 DML 在执行,这期间可能会引入一些新的空洞。

(2)在重建表的时候,InnoDB 不会把整张表占满,每个页留了 1/16 给后续的更新用。也就是说,其实重建表之后不是“最”紧凑的。

假如是这么一个过程:

1. 将表 t 重建一次;

2. 插入一部分数据,但是插入的这些数据,用掉了一部分的预留空间;

3. 这种情况下,再重建一次表 t,就可能会出现问题中的现象。



2 count(*)这么慢,我该怎么办?

2.1 count(*) 的实现方式

在不同的 MySQL 引擎中,count(*) 有不同的实现方式。


MyISAM 引擎:把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高。如果加了 where 条件的话,MyISAM 表也是不能返回得这么快的

InnoDB 引擎:,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。


为什么 InnoDB 不跟 MyISAM 一样,也把数字存起来呢?

因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的。


假设表 t 中现在有 10000 条记录,我们设计了三个用户并行的会话。

会话 A 先启动事务并查询一次表的总行数;

会话 B 启动事务,插入一行后记录后,查询表的总行数;

会话 C 先启动一个单独的语句,插入一行记录后,查询表的总行数。

我们假设从上到下是按照时间顺序执行的,同一行语句是在同一时刻执行的。

图 1 会话 A、B、C 的执行流程

在最后一个时刻,三个会话 A、B、C 会同时查询表 t 的总行数,但拿到的结果却不同。

这和 InnoDB 的事务设计有关系,可重复读是它默认的隔离级别,在代码上就是通过多版本并发控制,也就是 MVCC 来实现的。每一行记录都要判断自己是否对这个会话可见,因此对于 count(*) 请求来说,InnoDB 只好把数据一行一行地读出依次判断,可见的行才能够用于计算“基于这个查询”的表的总行数。


MySQL,在执行 count(*) 操作的时候还是做了优化的。InnoDB 是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。因此,MySQL 优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。


show table status 这个命令的输出结果里面也有一个 TABLE_ROWS 用于显示这个表当前有多少行,这个命令执行挺快的,那这个 TABLE_ROWS 能代替 count(*) 吗?

索引统计的值是通过采样来估算的。TABLE_ROWS 就是从这个采样估算得来的,官方文档说误差可能达到 40% 到 50%。所以,show table status 命令显示的行数也不能直接使用。


小结一下:

  • MyISAM 表虽然 count(*) 很快,但是不支持事务;
  • show table status 命令虽然返回很快,但是不准确;
  • InnoDB 表直接 count(*) 会遍历全表,虽然结果准确,但会导致性能问题。


如果你现在有一个页面经常要显示交易系统的操作记录总数,到底应该怎么办呢?答案是,我们只能自己计数


2.2 用缓存系统保存计数

对于更新很频繁的库来说,你可能会第一时间想到,用缓存系统来支持。

你可以用一个 Redis 服务来保存这个表的总行数。这个表每被插入一行 Redis 计数就加 1,每被删除一行 Redis 计数就减 1。这种方式下,读和更新操作都很快,但你再想一下这种方式存在什么问题吗?


没错,缓存系统可能会丢失更新。但实际上,将计数保存在缓存系统中的方式,还不只是丢失更新的问题。即使 Redis 正常工作,这个值还是逻辑上不精确的。


设想一下有这么一个页面,要显示操作记录的总数,同时还要显示最近操作的 100 条记录。那么,这个页面的逻辑就需要先到 Redis 里面取出计数,再到数据表里面取数据记录。

在 T3 时刻会话 B 来查询的时候,会显示出新插入的 R 这个记录,但是 Redis 的计数还没加 1。这时候,就会出现我们说的数据不一致。

会话 B 在 T3 时刻查询的时候,Redis 计数加了 1 了,但还查不到新插入的 R 这一行,也是数据不一致的情况。


并发系统里面,我们是无法精确控制不同线程的执行时刻的,因为存在图中的这种操作序列,所以,我们说即使 Redis 正常工作,这个计数值还是逻辑上不精确的。


2.3 在数据库保存计数

如果我们把这个计数直接放到数据库里单独的一张计数表 C 中,又会怎么样呢?首先,这解决了崩溃丢失的问题,InnoDB 是支持崩溃恢复不丢数据的。


现在我们就利用“事务”这个特性,把问题解决掉。

虽然会话 B 的读操作仍然是在 T3 执行的,但是因为这时候更新事务还没有提交,所以计数值加 1 这个操作对会话 B 还不可见。因此,会话 B 看到的结果里, 查计数值和“最近 100 条记录”看到的结果,逻辑上就是一致的。


2.4 不同的 count 用法

在 select count(?) from t 这样的查询语句里面,count(*)、count(主键 id)、count(字段) 和 count(1) 等不同用法的性能,


这count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。


所以,count(*)、count(主键 id) 和 count(1) 都表示返回满足条件的结果集的总行数;而 count(字段),则表示返回满足条件的数据行里面,参数“字段”不为 NULL 的总个数。


分析性能差别的时候,你可以记住这么几个原则:

1. server 层要什么就给什么;

2. InnoDB 只给必要的值;

3. 现在的优化器只优化了 count(*) 的语义为“取行数”,其他“显而易见”的优化并没有做。


(1)对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。count(id)可能会选择最小的索引来遍历

(2)对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。


单看这两个用法的差别的话,你能对比出来,count(1) 执行得要比 count(主键 id) 快。因为从引擎返回 id 会涉及到解析数据行,以及拷贝字段值的操作。


(3)对于 count(字段) 来说:

1. 如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;

2. 如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。count(字段)的话,如果字段上没有索引,就只能选主键索引


(4)但是 count(*) 是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count(*) 肯定不是 null,按行累加。

所以结论是:按照效率排序的话,count(字段)<count(主键 id)<count(1)≈count(*),所以我建议你,尽量使用 count(*)。


小结

  • 在不同引擎中 count(*) 的实现方式是不一样的,也分析了用缓存系统来存储计数值存在的问题。
  • 其实,把计数放在 Redis 里面,不能够保证计数和 MySQL 表里的数据精确一致的原因,是这两个不同的存储构成的系统,不支持分布式事务,无法拿到精确一致的视图。而把计数值也放在 MySQL 中,就解决了一致性视图的问题。
  • InnoDB 引擎支持事务,我们利用好事务的原子性和隔离性,就可以简化在业务开发时的逻辑。这也是 InnoDB 引擎备受青睐的原因之一。


2.5 思考题

在讨论的方案中,我们用了事务来确保计数准确。由于事务可以保证中间结果不被别的事务读到,因此修改计数值和插入新记录的顺序是不影响逻辑结果的。但是,从并发系统性能的角度考虑,你觉得在这个事务序列里,应该先插入操作记录,还是应该先更新计数表呢?

因为更新计数表涉及到行锁的竞争,先插入再更新能最大程度地减少了事务之间的锁等待,提升了并发度。

相关推荐

【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...

Pure Storage推出统一数据管理云平台及新闪存阵列

PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...

对Java学习的10条建议(对java课程的建议)

不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...

SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!

官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...

JDK21有没有什么稳定、简单又强势的特性?

佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...

「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了

在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...

Java面试题及答案最全总结(2025版)

大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...

数据库日常运维工作内容(数据库日常运维 工作内容)

#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...

分布式之系统底层原理(上)(底层分布式技术)

作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...

oracle 死锁了怎么办?kill 进程 直接上干货

1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...

SpringBoot 各种分页查询方式详解(全网最全)

一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...

《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略

《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...

LoadRunner(loadrunner录制不到脚本)

一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...

Redis数据类型介绍(redis 数据类型)

介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...

RMAN备份监控及优化总结(rman备份原理)

今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...

取消回复欢迎 发表评论: