浅谈Redis中的Rehash机制
mhr18 2024-11-20 18:46 22 浏览 0 评论
众所周知,redis支持多种数据结构,其中dict是使用频率相当高,也是非常实用的一种结构。在redis的具体实现中,使用了一种叫做渐进式哈希(rehashing)的机制来提高dict的缩放效率,在看这一部分的源码的时候,真的是有实实在在被优雅到的。
其实关于渐进式哈希的相关文章已经不少了,但是我还是决定自己写一篇,一方面是重新梳理思路,另一方面可以加深一下印象。
在看rehash的函数主体之前,我们先来看一下dict的数据结构是如何定义的:
/* 哈希表节点 */
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
/* This is our hash table structure. Every dictionary has two of this as we
* implement incremental rehashing, for the old to the new table. */
/* 哈希表
* 每个字典都使用两个哈希表,以实现渐进式 rehash 。
*/
typedef struct dictht {
// 哈希表数组
// 可以看作是:一个哈希表数组,数组的每个项是entry链表的头结点(链地址法解决哈希冲突)
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
/* 字典 */
typedef struct dict {
// 类型特定函数
dictType *type;
// 私有数据
void *privdata;
// 哈希表
dictht ht[2];
// rehash 索引
// 当 rehash 不在进行时,值为 -1
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
// 目前正在运行的安全迭代器的数量
int iterators; /* number of iterators currently running */
} dict;
dict的结构大致如上,接下来分析一下其中最重要的几个数据成员:
dictht::table:哈希表内部的table结构使用了链地址法来解决哈希冲突,刚开始看的时候我很奇怪,这怎么是个二维数组?这其实是一个指向数组的指针,数组中的每一项都是entry链表的头结点。
dictht ht[2]:在dict的内部,维护了两张哈希表,作用等同于是一对滚动数组,一张表是旧表,一张表是新表,当hashtable的大小需要动态改变的时候,旧表中的元素就往新开辟的新表中迁移,当下一次变动大小,当前的新表又变成了旧表,以此达到资源的复用和效率的提升。
rehashidx:因为是渐进式的哈希,数据的迁移并不是一步完成的,所以需要有一个索引来指示当前的rehash进度。当rehashidx为-1时,代表没有哈希操作。
接下来我们来看rehash的主体部分(直接取自github的最新版本):
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
int empty_visits = n*10; /* Max number of empty buckets to visit. */
if (!dictIsRehashing(d)) return 0;
while(n-- && d->ht[0].used != 0) {
dictEntry *de, *nextde;
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(d->ht[0].size > (unsigned long)d->rehashidx);
while(d->ht[0].table[d->rehashidx] == NULL) {
d->rehashidx++;
if (--empty_visits == 0) return 1;
}
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while(de) {
uint64_t h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
}
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;
}
/* Check if we already rehashed the whole table... */
if (d->ht[0].used == 0) {
zfree(d->ht[0].table);
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;
return 0;
}
/* More to rehash... */
return 1;
}
了解一个函数功能最好的入口就是它的注释。我们可以大致了解到:
rehash是以bucket(桶)为基本单位进行渐进式的数据迁移的,每步完成一个bucket的迁移,直至所有数据迁移完毕。一个bucket对应哈希表数组中的一条entry链表。新版本的dictRehash()还加入了一个最大访问空桶数(empty_visits)的限制来进一步减小可能引起阻塞的时间。
接下来我们深扒一下这个函数的具体实现。
判断dict是否正在rehashing,只有是,才能继续往下进行,否则已经结束哈希过程,直接返回。
接着是分n步进行的渐进式哈希主体部分(n由函数参数传入),在while的条件里面加入对.used旧表中剩余元素数目的观察,增加安全性。
一个runtime的断言保证一下渐进式哈希的索引没有越界。
接下来一个小while是为了跳过空桶,同时更新剩余可以访问的空桶数,empty_visits这个变量的作用之前已经说过了。
现在我们来到了当前的bucket,在下一个while(de)中把其中的所有元素都迁移到ht[1]中,索引值是辅助了哈希表的大小掩码计算出来的,可以保证不会越界。同时更新了两张表的当前元素数目。
每一步rehash结束,都要增加索引值,并且把旧表中已经迁移完毕的bucket置为空指针。
最后判断一下旧表是否全部迁移完毕,若是,则回收空间,重置旧表,重置渐进式哈希的索引,否则用返回值告诉调用方,dict内仍然有数据未迁移。
渐进式哈希的精髓在于:数据的迁移不是一次性完成的,而是可以通过dictRehash()这个函数分步规划的,并且调用方可以及时知道是否需要继续进行渐进式哈希操作。如果dict数据结构中存储了海量的数据,那么一次性迁移势必带来redis性能的下降,别忘了redis是单线程模型,在实时性要求高的场景下这可能是致命的。而渐进式哈希则将这种代价可控地分摊了,调用方可以在dict做插入,删除,更新的时候执行dictRehash(),最小化数据迁移的代价。
在迁移的过程中,数据是在新表还是旧表中并不是一个非常急迫的需求,迁移的过程并不会丢失数据,在旧表中找不到再到新表中寻找就是了。
所以在后面的dict相关的函数里,会大量的看到
if(dictIsRehashing(d))
_dictRehashStep(d); // 单步rehash
这样的代码。
最后是从《Redis设计与实现》中copy来的图解,可以帮助大家更形象地理解整个incremental rehash的过程:
总结一下
redis高性能的保障采取了各式各样的措施,不乏很多优雅惊艳的工程技巧,非常值得我们学习。在阅读源码的过程中,还给我留下深刻印象的一点就是:redis对于内存的管理到了精细的程度,也可能是我太久没看pure c的项目了吧,收获还是颇丰的。希望能和大家一起共同进步。
- 上一篇:Redis集群
- 下一篇:Redis Cluster集群扩容主从节点详细教程
相关推荐
- 【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...
- Pure Storage推出统一数据管理云平台及新闪存阵列
-
PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...
- 对Java学习的10条建议(对java课程的建议)
-
不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...
- SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!
-
官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...
- JDK21有没有什么稳定、简单又强势的特性?
-
佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...
- 「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了
-
在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...
- Java面试题及答案最全总结(2025版)
-
大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...
- 数据库日常运维工作内容(数据库日常运维 工作内容)
-
#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...
- 分布式之系统底层原理(上)(底层分布式技术)
-
作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...
- oracle 死锁了怎么办?kill 进程 直接上干货
-
1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...
- SpringBoot 各种分页查询方式详解(全网最全)
-
一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...
- 《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略
-
《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...
- LoadRunner(loadrunner录制不到脚本)
-
一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...
- Redis数据类型介绍(redis 数据类型)
-
介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...
- RMAN备份监控及优化总结(rman备份原理)
-
今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)