百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

Mysql百万级数据量级下,如何高效的迁移到Redis?

mhr18 2024-11-09 12:18 15 浏览 0 评论

前言

随着系统的运行,数据量变得越来越大,单纯的将数据存储在mysql中,已然不能满足查询要求了,此时我们引入Redis作为查询的缓存层,将业务中的热数据保存到Redis,扩展传统关系型数据库的服务能力,用户通过应用直接从Redis中快速获取常用数据,或者在交互式应用中使用Redis保存活跃用户的会话,都可以极大地降低后端关系型数据库的负载,提升用户体验。

传统命令的缺点

使用传统的redis client命令在大数据量的导入场景下存在如下缺陷:

由于redis是单线程模型,虽然避免了多线程下线程切换所耗费的时间,单一顺序的执行命令也很快,但是在大批量数据导入的场景下,发送命令所花费的时间和接收服务器响应结果耗费的时间就会被放大。

假如需要导入100万条数据,那光是命令执行时间,就需要花费100万*(t1 + t2)。

除了逐条命令发送,当然redis设计肯定也会考虑这个问题,所以出现了pipelining管道模式。

但是pipelining在命令行中是没有的,使得我们又需要编写新的处理代码,来接收批量的响应。但是只有很少很少的客户端代码支持,比如php-redis的扩展就不支持异步。

pipelining管道模式,其实就是减少了TCP连接的交互时间,当一批命令执行完毕后,一次性发送结果。

其实现原理是采用FIFO(先进先出)的队列来保证数据的顺序性。

只有一小部分客户端支持非阻塞I/O,并不是所有的客户端都能够以一种有效的方式解析应答,以最大化吞吐量。

由于这些原因,将庞大数据导入到Redis的首选方法是生成一个包含Redis协议数据格式,批量的发送过去。

数据导入Redis热身

采用nc命令导入数据

nc是netcat的简写,nc的作用有:

(1)实现任意TCP/UDP端口的侦听,增加-l参数后,nc可以作为server以TCP或UDP方式侦听指定端口

(2)端口的扫描,nc可以作为client发起TCP或UDP连接

(3)机器之间传输文件

(4)机器之间网络测速

采用pipe模式导入数据

然而,使用nc监听并不是一个非常可靠的方式来执行大规模的数据导入,因为netcat并不真正知道何时传输了所有数据,也无法检查错误。在2.6或更高版本的Redis中,Redis -cli脚本支持一种称为pipe管道模式的新模式,这种模式是为了执行大规模插入而设计的。使用管道模式的命令运行如下:

由上图,可以看到pipe命令的返回结果,txt文件中有多少行命令,返回的replies数就是多少,errors表示其中执行错误的命令条数。

redis协议学习

协议的格式为:

*<参数数量>  \r\n
lt;参数 1 的字节数量>  \r\n
<参数 1 的数据> \r\n
...
lt;参数 N 的字节数量> \r\n
<参数 N 的数据> \r\n

比如:插入一条hash类型的数据。

HSET id book1 book_description1

根据Redis协议,总共有4个部分,所以开头为*4,其余内容解释如下:

内容长度协议命令HSET4$4id2$2book15$5book_description117$17

注意一下:HSET命令本身也作为协议的其中一个参数来发送。

构造出来的协议数据结构:

*4\r\n$4\r\nHSET\r\n$2\r\nid\r\n$5\r\nbook1\r\n$17\r\nbook_description1\r\n

格式化一下:

*4\r\n
$4\r\n
HSET\r\n
$2\r\n
idvvvv\r\n
$5\r\n
book1\r\n
$17\r\n
book_description1\r\n

RESP协议 bulk

Redis客户机使用一种称为RESP (Redis序列化协议)的协议与Redis服务器通信。

redis-cli pipe模式需要和nc命令一样快,并且解决了nc命令不知道何时命令结束的问题。

在发送数据的同时,它同样会去读取响应,尝试去解析。

一旦输入流中没有读取到更多的数据之后,它就会发送一个特殊的20比特的echo命令,标识最后一个命令已经发送完毕如果在响应结果中匹配到这个相同数据后,说明本次批量发送是成功的。

使用这个技巧,我们不需要解析发送给服务器的协议来了解我们发送了多少命令,只需要解析应答即可。

在解析应答时,redis会对解析的应答进行一个计数,在最后能够告诉用户大量插入会话向服务器传输的命令的数量。也就是上面我们使用pipe模式实际操作的响应结果。

将输入数据源换成mysql

上面的例子中,我们以一个txt文本为输入数据源,使用了pipe模式导入数据。

基于上述协议的学习和理解,我们只需要将mysql中的数据按照既定的协议通过pipe模式导入Redis即可。

实际案例--从Mysql导入百万级数据到Redis

首先造数据

由于环境限制,所以这里没有用真实数据来实现导入,那么我们就先使用一个存储过程来造一百万条数据把。使用存储过程如下:

DELIMITER $
USE `cb_mon`$

DROP PROCEDURE IF EXISTS `test_insert`$
CREATE DEFINER=`root`@`%` PROCEDURE `test_insert`()
BEGIN

        DECLARE i INT DEFAULT 1;
        WHILE i<= 1000000
            DO
            INSERT INTO t_book(id,number,NAME,descrition)
            VALUES (i, CONCAT("00000",i) , CONCAT('book',i)
            , CONCAT('book_description',i));    
            SET i=i+1;
        END WHILE ;
        COMMIT;
    END$

DELIMITER ;

调用存储过程:

CALL test_insert();

查看表数据:

按协议构造查询语句

按照上述redis协议,我们使用如下sql来构造协议数据

SELECT
  CONCAT(
    "*4\r\n",
    "#34;,
    LENGTH(redis_cmd),
    "\r\n",
    redis_cmd,
    "\r\n",
    "#34;,
    LENGTH(redis_key),
    "\r\n",
    redis_key,
    "\r\n",
    "#34;,
    LENGTH(hkey),
    "\r\n",
    hkey,
    "\r\n",
    "#34;,
    LENGTH(hval),
    "\r\n",
    hval,
    "\r"
  )
FROM
  (SELECT
    "HSET" AS redis_cmd,
    id AS redis_key,
    NAME AS hkey,
    descrition AS hval
  FROM
    cb_mon.t_book
  ) AS t limit 1000000 

并将内容保存至redis.sql 文件中。

编写脚本使用pipe模式导入redis

编写shell脚本。由于我在主机上是通过docker安装的redis和mysql,以下脚本供参考:

#!/bin/bash
starttime=`date +'%Y-%m-%d %H:%M:%S'`

docker exec -i 899fe01d4dbc mysql --default-character-set=utf8   
--skip-column-names --raw < ./redis.sql
| docker exec -i 4c90ef506acd redis-cli --pipe

endtime=`date +'%Y-%m-%d %H:%M:%S'`
start_seconds=$(date --date="$starttime" +%s);
end_seconds=$(date --date="$endtime" +%s);

echo "脚本执行耗时: "$((end_seconds-start_seconds))"s"

执行截图:

可以看到百万级的数据导入redis,只花费了7秒,效率非常高。

注意事项

如果mysql表特别大,可以考虑分批导入,或者将表拆分,否则在导入过程中可能会发生

lost connection to mysql server during query

由于max_allowed_packed和超时时间限制,查询数据的过程中,可能会造成连接断开,所以在数据表的数据量特别大的时候,需要分页或者将表拆分导入。

总结

本篇文章主要探讨了,Mysql百万级数据量级下,如何高效的迁移到Redis中去,逐步实现目标的过程中,总结了如下几点

  1. redis单线程执行命令,避免了线程切换所消耗的时间,但是在超大数据量级下,其发送、响应接收的时延不可忽视。
  2. 网络nc命令的应用场景,及在数据导入时存在的缺点。
  3. redis RESP协议的理解和应用。
  4. 百万量级Mysql数据的Redis快速导入案例。

原出处:https://segmentfault.com/a/1190000021719490

相关推荐

B站收藏视频失效?mybili 收藏夹备份神器完整部署指南

本内容来源于@什么值得买APP,观点仅代表作者本人|作者:羊刀仙很多B站用户都有过类似经历:自己精心收藏的视频突然“消失”,点开一看不是“已被删除”,就是“因UP主设置不可见”。而B站并不会主动通知...

中间件推荐初始化配置

Redis推荐初始化配置bind0.0.0.0protected-modeyesport6379tcp-backlog511timeout300tcp-keepalive300...

Redis中缓存穿透问题与解决方法

缓存穿透问题概述在Redis作为缓存使用时,缓存穿透是常见问题。正常查询流程是先从Redis缓存获取数据,若有则直接使用;若没有则去数据库查询,查到后存入缓存。但当请求的数据在缓存和数据库中都...

后端开发必看!Redis 哨兵机制如何保障系统高可用?

你是否曾在项目中遇到过Redis主服务器突然宕机,导致整个业务系统出现数据读取异常、响应延迟甚至服务中断的情况?面对这样的突发状况,作为互联网大厂的后端开发人员,如何快速恢复服务、保障系统的高可用...

Redis合集-大Key处理建议

以下是Redis大Key问题的全流程解决方案,涵盖检测、处理、优化及预防策略,结合代码示例和最佳实践:一、大Key的定义与风险1.大Key判定标准数据类型大Key阈值风险场景S...

深入解析跳跃表:Redis里的&quot;老六&quot;数据结构,专治各种不服

大家好,我是你们的码农段子手,今天要给大家讲一个Redis世界里最会"跳科目三"的数据结构——跳跃表(SkipList)。这货表面上是个青铜,实际上是个王者,连红黑树见了都要喊声大哥。...

Redis 中 AOF 持久化技术原理全解析,看完你就懂了!

你在使用Redis的过程中,有没有担心过数据丢失的问题?尤其是在服务器突然宕机、意外断电等情况发生时,那些还没来得及持久化的数据,是不是让你夜不能寐?别担心,Redis的AOF持久化技术就是...

Redis合集-必备的几款运维工具

Redis在应用Redis时,经常会面临的运维工作,包括Redis的运行状态监控,数据迁移,主从集群、切片集群的部署和运维。接下来,从这三个方面,介绍一些工具。先来学习下监控Redis实时...

别再纠结线程池大小 + 线程数量了,没有固定公式的!

我们在百度上能很轻易地搜索到以下线程池设置大小的理论:在一台服务器上我们按照以下设置CPU密集型的程序-核心数+1I/O密集型的程序-核心数*2你不会真的按照这个理论来设置线程池的...

网络编程—IO多路复用详解

假如你想了解IO多路复用,那本文或许可以帮助你本文的最大目的就是想要把select、epoll在执行过程中干了什么叙述出来,所以具体的代码不会涉及,毕竟不同语言的接口有所区别。基础知识IO多路复用涉及...

5分钟学会C/C++多线程编程进程和线程

前言对线程有基本的理解简单的C++面向过程编程能力创造单个简单的线程。创造单个带参数的线程。如何等待线程结束。创造多个线程,并使用互斥量来防止资源抢占。会使用之后,直接跳到“汇总”,复制模板来用就行...

尽情阅读,技术进阶,详解mmap的原理

1.一句话概括mmapmmap的作用,在应用这一层,是让你把文件的某一段,当作内存一样来访问。将文件映射到物理内存,将进程虚拟空间映射到那块内存。这样,进程不仅能像访问内存一样读写文件,多个进程...

C++11多线程知识点总结

一、多线程的基本概念1、进程与线程的区别和联系进程:进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程;线程:是运行中的实际的任务执行者。可以说,进程中包含了多...

微服务高可用的2个关键技巧,你一定用得上

概述上一篇文章讲了一个朋友公司使用SpringCloud架构遇到问题的一个真实案例,虽然不是什么大的技术问题,但如果对一些东西理解的不深刻,还真会犯一些错误。这篇文章我们来聊聊在微服务架构中,到底如...

Java线程间如何共享与传递数据

1、背景在日常SpringBoot应用或者Java应用开发中,使用多线程编程有很多好处,比如可以同时处理多个任务,提高程序的并发性;可以充分利用计算机的多核处理器,使得程序能够更好地利用计算机的资源,...

取消回复欢迎 发表评论: