百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

分布式限流之Redis+Lua实现(redis分布式限流方案)

mhr18 2024-11-05 10:25 23 浏览 0 评论

分布式限流最关键的是要将限流服务做成原子化,而解决方案可以使用redis+lua或者nginx+lua技术进行实现,通过这两种技术可以实现的高并发和高性能。

首先我们来使用redis+lua实现时间窗内某个接口的请求数限流,实现了该功能后可以改造为限流总并发/请求数和限制总资源数。Lua本身就是一种编程语言,也可以使用它实现复杂的令牌桶或漏桶算法。因操作是在一个lua脚本中(相当于原子操作),又因Redis是单线程模型,因此是线程安全的。

相比Redis事务来说,Lua脚本有以下优点

  • 减少网络开销: 不使用 Lua 的代码需要向 Redis 发送多次请求,而脚本只需一次即可,减少网络传输;
  • 原子操作:Redis 将整个脚本作为一个原子执行,无需担心并发,也就无需事务;
  • 复用:脚本会永久保存 Redis 中,其他客户端可继续使用。

下面使用SpringBoot项目来进行介绍。

准备Lua 脚本

req_ratelimit.lua

local key = "req.rate.limit:" .. KEYS[1]   --限流KEY
local limitCount = tonumber(ARGV[1])       --限流大小
local limitTime = tonumber(ARGV[2])        --限流时间
local current = tonumber(redis.call('get', key) or "0")
if current + 1 > limitCount then --如果超出限流大小
    return 0
else  --请求数+1,并设置1秒过期
    redis.call("INCRBY", key,"1")
    redis.call("expire", key,limitTime)
    return current + 1
end
  • 我们通过KEYS[1] 获取传入的key参数
  • 通过ARGV[1]获取传入的limit参数
  • redis.call方法,从缓存中get和key相关的值,如果为nil那么就返回0
  • 接着判断缓存中记录的数值是否会大于限制大小,如果超出表示该被限流,返回0
  • 如果未超过,那么该key的缓存值+1,并设置过期时间为1秒钟以后,并返回缓存值+1

准备Java项目

pom.xml加入
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-redis</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-aop</artifactId>
    </dependency>
    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-lang3</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-test</artifactId>
    </dependency>
</dependencies>

Redis 配置

spring.redis.host=127.0.0.1 
spring.redis.port=6379 
spring.redis.password=
spring.redis.database=0
# 连接池最大连接数(使用负值表示没有限制)
spring.redis.jedis.pool.max-active=20
# 连接池最大阻塞等待时间(使用负值表示没有限制)
spring.redis.jedis.pool.max-wait=-1
# 连接池中的最大空闲连接
spring.redis.jedis.pool.max-idle=10
# 连接池中的最小空闲连接
spring.redis.jedis.pool.min-idle=0
# 连接超时时间(毫秒)
spring.redis.timeout=2000
限流注解

注解的目的,是在需要限流的方法上使用

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimiter {

    /**
     * 限流唯一标识
     * @return
     */
    String key() default "";

    /**
     * 限流时间
     * @return
     */
    int time();

    /**
     * 限流次数
     * @return
     */
    int count();

}
lua文件配置及RedisTemplate配置
@Aspect
@Configuration
@Slf4j
public class RateLimiterAspect {


    @Autowired
    private RedisTemplate<String, Serializable> redisTemplate;

    @Autowired
    private DefaultRedisScript<Number> redisScript;

    @Around("execution(* com.sunlands.zlcx.datafix.web ..*(..) )")
    public Object interceptor(ProceedingJoinPoint joinPoint) throws Throwable {

        MethodSignature signature = (MethodSignature) joinPoint.getSignature();
        Method method = signature.getMethod();
        Class<?> targetClass = method.getDeclaringClass();
        RateLimiter rateLimit = method.getAnnotation(RateLimiter.class);

        if (rateLimit != null) {
            HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
            String ipAddress = getIpAddr(request);

            StringBuffer stringBuffer = new StringBuffer();
            stringBuffer.append(ipAddress).append("-")
                    .append(targetClass.getName()).append("- ")
                    .append(method.getName()).append("-")
                    .append(rateLimit.key());

            List<String> keys = Collections.singletonList(stringBuffer.toString());

            Number number = redisTemplate.execute(redisScript, keys, rateLimit.count(), rateLimit.time());

            if (number != null && number.intValue() != 0 && number.intValue() <= rateLimit.count()) {
                log.info("限流时间段内访问第:{} 次", number.toString());
                return joinPoint.proceed();
            }

        } else {
            return joinPoint.proceed();
        }

        throw new RuntimeException("已经到设置限流次数");
    }

    public static String getIpAddr(HttpServletRequest request) {
        String ipAddress = null;
        try {
            ipAddress = request.getHeader("x-forwarded-for");
            if (ipAddress == null || ipAddress.length() == 0 || "unknown".equalsIgnoreCase(ipAddress)) {
                ipAddress = request.getHeader("Proxy-Client-IP");
            }
            if (ipAddress == null || ipAddress.length() == 0 || "unknown".equalsIgnoreCase(ipAddress)) {
                ipAddress = request.getHeader("WL-Proxy-Client-IP");
            }
            if (ipAddress == null || ipAddress.length() == 0 || "unknown".equalsIgnoreCase(ipAddress)) {
                ipAddress = request.getRemoteAddr();
            }
            // 对于通过多个代理的情况,第一个IP为客户端真实IP,多个IP按照','分割
            if (ipAddress != null && ipAddress.length() > 15) {
                // "***.***.***.***".length()= 15
                if (ipAddress.indexOf(",") > 0) {
                    ipAddress = ipAddress.substring(0, ipAddress.indexOf(","));
                }
            }
        } catch (Exception e) {
            ipAddress = "";
        }
        return ipAddress;
    }


}
控制层
@RestController
@Slf4j
@RequestMapping("limit")
public class RateLimiterController {

    @Autowired
    private RedisTemplate redisTemplate;

    @GetMapping(value = "/test")
    @RateLimiter(key = "test", time = 10, count = 1)
    public ResponseEntity<Object> test() {

        String date = DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss.SSS");
        RedisAtomicInteger limitCounter = new RedisAtomicInteger("limitCounter", redisTemplate.getConnectionFactory());
        String str = date + " 累计访问次数:" + limitCounter.getAndIncrement();
        log.info(str);
        return ResponseEntity.ok(str);
    }
}

启动项目进行测试

不断访问url http://127.0.0.1:8090/limit/test,效果如下:

我这里为了简单演示是直接抛了一个RuntimeException,实际可以单独定义一个如RateLimitException,在上层直接处理这种频次限制的异常,以友好的方式返回给用户。

【转载请注明出处】:https://segmentfault.com/a/1190000022538822

相关推荐

Redis合集-使用benchmark性能测试

采用开源Redis的redis-benchmark工具进行压测,它是Redis官方的性能测试工具,可以有效地测试Redis服务的性能。本次测试使用Redis官方最新的代码进行编译,详情请参见Redis...

Java简历总被已读不回?面试挂到怀疑人生?这几点你可能真没做好

最近看了几十份简历,发现大部分人不是技术差,而是不会“卖自己”——一、简历死穴:你写的不是经验,是岗位说明书!反面教材:ד使用SpringBoot开发项目”ד负责用户模块功能实现”救命写法:...

redission YYDS(redission官网)

每天分享一个架构知识Redission是一个基于Redis的分布式Java锁框架,它提供了各种锁实现,包括可重入锁、公平锁、读写锁等。使用Redission可以方便地实现分布式锁。red...

从数据库行锁到分布式事务:电商库存防超卖的九重劫难与破局之道

2023年6月18日我们维护的电商平台在零点刚过3秒就遭遇了严重事故。监控大屏显示某爆款手机SKU_IPHONE13_PRO_MAX在库存仅剩500台时,订单系统却产生了1200笔有效订单。事故复盘发...

SpringBoot系列——实战11:接口幂等性的形而上思...

欢迎关注、点赞、收藏。幂等性不仅是一种技术需求,更是数字文明对确定性追求的体现。在充满不确定性的网络世界中,它为我们建立起可依赖的存在秩序,这或许正是技术哲学最深刻的价值所在。幂等性的本质困境在支付系...

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享在高流量场景下。首先,我需要回忆一下常见的优化策略,比如负载均衡、缓存、数据库优化、微服务拆分这些。不过,可能还需要考虑用户的具体情况,比...

Java面试题: 项目开发中的有哪些成长?该如何回答

在Java面试中,当被问到“项目中的成长点”时,面试官不仅想了解你的技术能力,更希望看到你的问题解决能力、学习迭代意识以及对项目的深度思考。以下是回答的策略和示例,帮助你清晰、有说服力地展示成长点:一...

互联网大厂后端必看!Spring Boot 如何实现高并发抢券逻辑?

你有没有遇到过这样的情况?在电商大促时,系统上线了抢券活动,结果活动刚一开始,服务器就不堪重负,出现超卖、系统崩溃等问题。又或者用户疯狂点击抢券按钮,最后却被告知无券可抢,体验极差。作为互联网大厂的后...

每日一题 |10W QPS高并发限流方案设计(含真实代码)

面试场景还原面试官:“如果系统要承载10WQPS的高并发流量,你会如何设计限流方案?”你:“(稳住,我要从限流算法到分布式架构全盘分析)…”一、为什么需要限流?核心矛盾:系统资源(CPU/内存/数据...

Java面试题:服务雪崩如何解决?90%人栽了

服务雪崩是指微服务架构中,由于某个服务出现故障,导致故障在服务之间不断传递和扩散,最终造成整个系统崩溃的现象。以下是一些解决服务雪崩问题的常见方法:限流限制请求速率:通过限流算法(如令牌桶算法、漏桶算...

面试题官:高并发经验有吗,并发量多少,如何回复?

一、有实际高并发经验(建议结构)直接量化"在XX项目中,系统日活用户约XX万,核心接口峰值QPS达到XX,TPS处理能力为XX/秒。通过压力测试验证过XX并发线程下的稳定性。"技术方案...

瞬时流量高并发“保命指南”:这样做系统稳如泰山,老板跪求加薪

“系统崩了,用户骂了,年终奖飞了!”——这是多少程序员在瞬时大流量下的真实噩梦?双11秒杀、春运抢票、直播带货……每秒百万请求的冲击,你的代码扛得住吗?2025年了,为什么你的系统一遇高并发就“躺平”...

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。比如上周有个小伙伴找我,五年经验但简历全是'参与系统设计''优化接口性能'这种空话。我就问他:你做的秒杀...

PHP技能评测(php等级考试)

公司出了一些自我评测的PHP题目,现将题目和答案记录于此,以方便记忆。1.魔术函数有哪些,分别在什么时候调用?__construct(),类的构造函数__destruct(),类的析构函数__cal...

你的简历在HR眼里是青铜还是王者?

你的简历在HR眼里是青铜还是王者?兄弟,简历投了100份没反应?面试总在第三轮被刷?别急着怀疑人生,你可能只是踩了这些"隐形求职雷"。帮3630+程序员改简历+面试指导和处理空窗期时间...

取消回复欢迎 发表评论: