百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

Redis缓存篇之淘汰机制:缓存满了怎么办?

mhr18 2024-11-05 10:22 37 浏览 0 评论

缓存的容量总是小于后端数据库的。随着业务系统的使用,缓存数据会撑满内存空间,该怎么处理呢?

本节我们来学习内存淘汰机制。在Redis 4.0之前有6种内存淘汰策略,之后又增加2种,一共8种,如下图所示:

  • noeviction策略:内存空间达到maxmemory时,不会淘汰数据,有新写入时会返回错误。
  • volatile-ttl策略:针对设置了过期时间的键值对,根据过期时间的先后进行修改,越早过期的越先被删除。
  • volatile-random策略:在设置了过期时间的键值对中,进行随机删除。
  • volatile-lru策略:使用LRU算法筛选设置了过期时间的键值对,进行删除。
  • volatile-lfu策略:使用LFU算法筛选设置了过期时间的键值对,进行删除。
  • allkeys-random策略:在所有键值对中随机选择并删除数据。
  • allkeys-lru策略:使用LRU算法在所有数据中进行筛选并删除数据。
  • allkeys-lfu策略:使用LFU算法在所有数据中进行筛选并删除数据。

对于TTL、Random比较好理解,下面学习一下LRU和LFU算法。

LRU算法

LRU算法,全称Least Recently Used。

其中MRU端指最近访问的数据;LRU端指最早访问的数据。

被访问的数据和新插入的数据会移到MRU端,空间满了后从LRU端删除。这样一来,最早访问的数据会逐渐被淘汰。

但LRU算法也有其缺点:

  • 需要用链表管理所有缓存数据,带来额外的空间开销
  • 大量数据被访问,就会带来很多链表移动操作,降低Redis性能

而Redis对其进行简化:

  • Redis会记录每个数据的最近一次访问的时间戳(RedisObject中的lru字段)
  • Redis第一次淘汰数据时,会随机选出N个数据,作为一个候选集合。
  • 然后比较这N个数据的lru,把lru最小的从缓存中淘汰。

当再次淘汰数据时,会挑选数据放到第一次淘汰时的候选集合,要求小于候选集合中最小的lru值才能加入。

其中maxmemory-samples配置项:表示选出的个数N。可以通过以下命令进行设置:

CONFIG SET maxmemory-samples 100

LFU算法

LFU算法是在LRU策略基础上,为每个数据增加一个计数器,来统计这个数据的访问次数。

使用LFU策略筛选淘汰数据时,根据数据的访问次数进行筛选,把访问次数最低的数据淘汰。如果两个数据访问次数相同,再比较两个数据的访问时效性,把更久的数据淘汰。

如何实现

LFU也是使用RedisObject的lru字段来实现。

把24bit的lru字段拆分成两部分:

  • ldt值:lru字段的前16bit,表示数据的访问时间戳;
  • counter值:lru字段的后8bit,表示数据的访问次数;

当LFU策略淘汰数据时,Redis在候选集合中,根据lru字段的后8bit选择访问次数最小的数据进行淘汰。如果访问次数相同,再根据lru字段的前16bit值大小,选择更久的数据进行淘汰。

关于counter只有8bit(255)的问题

Redis并没有采用数据每被访问一次,就+1的规则,而是采用一个类似于随机+1的规则:

double r = (double)rand()/RAND_MAX;
...
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;   

通过设置 lfu_log_factor 配置项来控制计数器值增加的速度,避免counter很快到255。下图是 lfu_log_factor 设置不同值时,counter的增长情况:

总结

  • 如何设置缓存空间大小:设置为总数据量的15%到30%,兼顾访问性能和内存空间开销。
  • 优先使用allkeys-lru策略。如果业务数据中有明显的冷热数据区分,建议使用allkeys-lru策略。
  • 如果业务数据访问频繁相关不大,没有明显的冷热数据区分,建议使用allkeys-random策略。
  • 如果业务中有置顶的需要,可以使用volatile-lru策略,同时不给这些置顶数据设置过期时间。

作者:大杂草

原文链接:https://www.cnblogs.com/liang24/p/14210482.html

相关推荐

【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...

Pure Storage推出统一数据管理云平台及新闪存阵列

PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...

对Java学习的10条建议(对java课程的建议)

不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...

SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!

官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...

JDK21有没有什么稳定、简单又强势的特性?

佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...

「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了

在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...

Java面试题及答案最全总结(2025版)

大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...

数据库日常运维工作内容(数据库日常运维 工作内容)

#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...

分布式之系统底层原理(上)(底层分布式技术)

作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...

oracle 死锁了怎么办?kill 进程 直接上干货

1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...

SpringBoot 各种分页查询方式详解(全网最全)

一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...

《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略

《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...

LoadRunner(loadrunner录制不到脚本)

一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...

Redis数据类型介绍(redis 数据类型)

介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...

RMAN备份监控及优化总结(rman备份原理)

今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...

取消回复欢迎 发表评论: