百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

阿里云Redis读写分离典型场景:如何轻松搭建电商秒杀系统

mhr18 2024-11-04 12:46 26 浏览 0 评论

秒杀活动是绝大部分电商选择的低价促销,推广品牌的方式。不仅可以给平台带来用户量,还可以提高平台知名度。一个好的秒杀系统,可以提高平台系统的稳定性和公平性,获得更好的用户体验,提升平台的口碑,从而提升秒杀活动的最大价值。

本次主要讨论阿里云云数据库Redis缓存设计高并发的秒杀系统。

秒杀的特征

秒杀活动对稀缺或者特价的商品进行定时,定量售卖,吸引成大量的消费者进行抢购,但又只有少部分消费者可以下单成功。因此,秒杀活动将在较短时间内产生比平时大数十倍,上百倍的页面访问流量和下单请求流量。

秒杀活动可以分为3个阶段:

  • 秒杀前:用户不断刷新商品详情页,页面请求达到瞬时峰值。

  • 秒杀开始:用户点击秒杀按钮,下单请求达到瞬时峰值。

  • 秒杀后:一部分成功下单的用户不断刷新订单或者产生退单操作,大部分用户继续刷新商品详情页等待退单机会。

消费者提交订单,一般做法是利用数据库的行级锁。只有抢到锁的请求可以进行库存查询和下单操作。但是在高并发的情况下,数据库无法承担如此大的请求,往往会使整个服务blocked,在消费者看来就是服务器宕机。

秒杀系统

系统架构图

秒杀系统的流量虽然很高,但是实际有效流量是十分有限的。利用系统的层次结构,在每个阶段提前校验,拦截无效流量,可以减少大量无效的流量涌入数据库。

利用浏览器缓存和CDN抗压静态页面流量

秒杀前,用户不断刷新商品详情页,造成大量的页面请求。所以,我们需要把秒杀商品详情页与普通的商品详情页分开。对于秒杀商品详情页尽量将能静态化的元素尽量静态化处理,除了秒杀按钮需要服务端进行动态判断,其他的静态数据可以缓存在浏览器和CDN上。这样,秒杀前刷新页面导致的流量进入服务段的流量只有很小的一部分

利用阿里云读写分离Redis缓存拦截流量

CDN是第一级流量拦截,第二级流量拦截我们使用支持读写分离的阿里云Redis。在这一阶段我们主要读取数据,读写分离Redis能支持高大60万以上qps的,完全可以支持需求。

首先通过数据控制模块,提前将秒杀商品的缓存到阿里云读写分离Redis,并设置秒杀开始标记:

"goodsId_count": 100 //总数"goodsId_start": 0 //开始标记"goodsId_access": 0 //接受下单数

秒杀开始前,服务集群读取goodsId_Start为0,直接返回未开始。

数据控制模块将goodsId_start改为1,标志秒杀开始。

服务集群缓存开始标记位并开始接受请求,并记录到redis中goodsId_access,商品剩余数量为(goodsId_count - goodsId_access)。

当接受下单数达到goodsId_count后,继续拦截所有请求,商品剩余数量为0

可以看出,最后成功参与下单的请求只有少部分可以被接受。在高并发的情况下,允许稍微多的流量进入。因此可以控制接受下单数的比例。

利用阿里云主从版Redis缓存加速库存扣量

成功参与下单,进入下层服务,开始进行订单信息校验,库存扣量。为了避免直接访问数据库,我们使用阿里云主从版Redis来进行库存扣量,阿里云主从版Redis提供10万级别的QPS。我们使用Redis来优化库存查询,提前拦截秒杀失败的请求,将大大提高系统的整体吞吐量。我们也是通过数据控制模块提前将库存存入Redis:

//我们将每个秒杀商品在redis中用一个hash结构表示

"goodsId" : { "Total": 100
 "Booked": 100}

扣量时,服务器通过请求Redis获取下单资格,我们通过lua脚本实现,由于Redis时单线程模型,lua可以保证多个命令的原子性:

lua脚本:

local n = tonumber(ARGV[1])if not n or n == 0 then return 0 end 
local vals = redis.call("HMGET", KEYS[1], "Total", "Booked");
local total = tonumber(vals[1])
local blocked = tonumber(vals[2])if not total or not blocked then return 0 end 
if blocked + n <= total then
 redis.call("HINCRBY", KEYS[1], "Booked", n) 
 return n; 
end 
return 0

先使用SCRIPT LOAD将lua脚本提前缓存在Redis,然后调用EVALSHA调用脚本,比直接调用EVAL节省网络带宽:

redis 127.0.0.1:6379>SCRIPT LOAD "lua code""438dd755f3fe0d32771753eb57f075b18fed7716"
 redis 127.0.0.1:6379>EVAL 438dd755f3fe0d32771753eb57f075b18fed7716 1 goodsId 1

秒杀服务通过判断Redis是否返回抢购个数n,即可知道此次请求是否扣量成功。

使用阿里云主从版Redis实现简单的消息队列异步下单入库

扣量完成后,需要进行订单入库。如果商品数量较少的时候,直接操作数据库即可。如果秒杀的商品是1万,甚至10万级别,那数据库锁冲突将带来很大的性能瓶颈。因此,利用消息队列组件,当秒杀服务将订单信息写入消息队列后,即可认为下单完成,避免直接操作数据库。

消息队列组件依然可以使用Redis实现,在R2中用list数据结构表示:

orderList {
 [0] = {订单内容}
 [1] = {订单内容}
 [2] = {订单内容}
 ...
}

将订单内容写入Redis:

LPUSH orderList {订单内容}

异步下单模块从Redis中顺序获取订单信息,并将订单写入数据库:

BRPOP orderList 0

我们通过使用Redis作为消息队列,异步处理订单入库,有效的提高了用户的下单完成速度。

数据控制模块,管理秒杀数据同步

最开始,我们利用阿里云读写分离Redis进行流量限制,只让部分流量进入下单。对于下单检验失败和退单等情况,我们需要让更多的流量进来。因此,数据控制模块需要定时将数据库中的数据进行一定的计算,同步到主从版Redis,同时再同步到读写分离的Redis,让更多的流量进来。

相关推荐

Redis合集-使用benchmark性能测试

采用开源Redis的redis-benchmark工具进行压测,它是Redis官方的性能测试工具,可以有效地测试Redis服务的性能。本次测试使用Redis官方最新的代码进行编译,详情请参见Redis...

Java简历总被已读不回?面试挂到怀疑人生?这几点你可能真没做好

最近看了几十份简历,发现大部分人不是技术差,而是不会“卖自己”——一、简历死穴:你写的不是经验,是岗位说明书!反面教材:ד使用SpringBoot开发项目”ד负责用户模块功能实现”救命写法:...

redission YYDS(redission官网)

每天分享一个架构知识Redission是一个基于Redis的分布式Java锁框架,它提供了各种锁实现,包括可重入锁、公平锁、读写锁等。使用Redission可以方便地实现分布式锁。red...

从数据库行锁到分布式事务:电商库存防超卖的九重劫难与破局之道

2023年6月18日我们维护的电商平台在零点刚过3秒就遭遇了严重事故。监控大屏显示某爆款手机SKU_IPHONE13_PRO_MAX在库存仅剩500台时,订单系统却产生了1200笔有效订单。事故复盘发...

SpringBoot系列——实战11:接口幂等性的形而上思...

欢迎关注、点赞、收藏。幂等性不仅是一种技术需求,更是数字文明对确定性追求的体现。在充满不确定性的网络世界中,它为我们建立起可依赖的存在秩序,这或许正是技术哲学最深刻的价值所在。幂等性的本质困境在支付系...

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享在高流量场景下。首先,我需要回忆一下常见的优化策略,比如负载均衡、缓存、数据库优化、微服务拆分这些。不过,可能还需要考虑用户的具体情况,比...

Java面试题: 项目开发中的有哪些成长?该如何回答

在Java面试中,当被问到“项目中的成长点”时,面试官不仅想了解你的技术能力,更希望看到你的问题解决能力、学习迭代意识以及对项目的深度思考。以下是回答的策略和示例,帮助你清晰、有说服力地展示成长点:一...

互联网大厂后端必看!Spring Boot 如何实现高并发抢券逻辑?

你有没有遇到过这样的情况?在电商大促时,系统上线了抢券活动,结果活动刚一开始,服务器就不堪重负,出现超卖、系统崩溃等问题。又或者用户疯狂点击抢券按钮,最后却被告知无券可抢,体验极差。作为互联网大厂的后...

每日一题 |10W QPS高并发限流方案设计(含真实代码)

面试场景还原面试官:“如果系统要承载10WQPS的高并发流量,你会如何设计限流方案?”你:“(稳住,我要从限流算法到分布式架构全盘分析)…”一、为什么需要限流?核心矛盾:系统资源(CPU/内存/数据...

Java面试题:服务雪崩如何解决?90%人栽了

服务雪崩是指微服务架构中,由于某个服务出现故障,导致故障在服务之间不断传递和扩散,最终造成整个系统崩溃的现象。以下是一些解决服务雪崩问题的常见方法:限流限制请求速率:通过限流算法(如令牌桶算法、漏桶算...

面试题官:高并发经验有吗,并发量多少,如何回复?

一、有实际高并发经验(建议结构)直接量化"在XX项目中,系统日活用户约XX万,核心接口峰值QPS达到XX,TPS处理能力为XX/秒。通过压力测试验证过XX并发线程下的稳定性。"技术方案...

瞬时流量高并发“保命指南”:这样做系统稳如泰山,老板跪求加薪

“系统崩了,用户骂了,年终奖飞了!”——这是多少程序员在瞬时大流量下的真实噩梦?双11秒杀、春运抢票、直播带货……每秒百万请求的冲击,你的代码扛得住吗?2025年了,为什么你的系统一遇高并发就“躺平”...

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。比如上周有个小伙伴找我,五年经验但简历全是'参与系统设计''优化接口性能'这种空话。我就问他:你做的秒杀...

PHP技能评测(php等级考试)

公司出了一些自我评测的PHP题目,现将题目和答案记录于此,以方便记忆。1.魔术函数有哪些,分别在什么时候调用?__construct(),类的构造函数__destruct(),类的析构函数__cal...

你的简历在HR眼里是青铜还是王者?

你的简历在HR眼里是青铜还是王者?兄弟,简历投了100份没反应?面试总在第三轮被刷?别急着怀疑人生,你可能只是踩了这些"隐形求职雷"。帮3630+程序员改简历+面试指导和处理空窗期时间...

取消回复欢迎 发表评论: