百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

深入浅出Redis:内存淘汰策略(redis 内存淘汰策略)

mhr18 2024-10-24 11:11 37 浏览 0 评论

1 前言

通过前面的一些文章我们知道,Redis的各项能力是基于内存实现的,相对其他的持久化存储(如MySQL、File等,数据持久化在磁盘上),性能会高很多,这也是高速缓存的一个优势。
但是问题来了,每一台机器内存终归是有限的,即使是集群模式,总的内存空间也是有限的,不能无限制的消耗。而在Redis的使用过程中,很有可能出现使用消耗超过内存实际大小的情况。比如以下几种情况:

  • 未设置过期时间,Redis的Key将一直存在,直至我们明确将它删除。
  • 过度跟不合理的持久化(无论是RDB快照 或是 AOF日志),都会在内存和磁盘中反复操作,需要一定的内存空间进行处理。
  • 不及时清理过期缓存:清理过期缓存的方式主要有以下两种,并不是实时或者准实时,所以存在部分过期缓存依旧存在的问题。主动定期删除: Redis 默认每 1 秒运行 10 次(平均每 100 ms 执行一次),每次随机抽取部分设置过期时间的 key,检查是否过期,若是过期就直接删除,直至过期的 key 比率低于 1/4。被动惰性删除:缓存过期并不马上清理,当客户端的请求查询该 key 的时候,检查下 key 是否过期,如果过期,则删除该 key,重新获取。如果长时间未请求,就会有过期缓存滞留。
  • 不合理不规范的使用缓存,导致内存耗尽,比如:过度使用缓存,既缓存冷数据也能缓存热数据,导致内存占用过多,性能也没有得到有效提高缓存数量过多或者单个缓存的Value体积过大缓存过期时间设置过长或者根本不设置

2 Redis内存淘汰策略

所以,如果放任上面的那几种情况,内存终归会满的,Redis自身有一套比较完善的内存淘汰策略来专门应对这个问题,在Redis Memory占用超过我们配置的阈值的时候触发策略执行。

# redis.conf 配置最大内存空间占用为2gb,超过则执行内存淘汰策略
redis > CONFIG SET maxmemory 2gb

内存淘汰策略一共有8中,除了一种不执行淘汰策略之外,其他7种都是按照各自不一的算法对内存中现有的数据进行处理。
我们下面详细来看一下这些淘汰策略,把他们分成三大类,8小类来逐一讲解:

2.1 不淘汰策略

2.1.1 noeviction 不淘汰策略

noeviction指的是即使资源超过 maxmemory 限制的值也不会执行淘汰,只是不允许创建新的缓存了。
当Redis内存占用达到我们上面的配置的阈值(比如 5gb)之后,就不允许新增缓存key了,当有新的缓存要创建的时候,Redis 直接返回error。

2.2 仅淘汰配置过期时间key

这边仅针对配置了过期时间的数据进行淘汰

2.3.1 volatile-lru :删除最近最少使用的key

LRU(Least Recently Used)是按照最近最少使用原则来筛选数据,即最不常用的数据会被筛选出来。
如果我们的服务中有冷热数据隔离需求,这无疑是一个比较好的办法。可以将缓存的一些不经常使用的冷数据,而且数据size比较大的,筛选出来清理掉。而近期频繁被使用的key就被保留下来了。
常见的场景如下:

  • 电商平台的冷热数据:比如冬季,保暖冬装、电暖设备的浏览次数就会升高,而相应的冷饮、制冷设备(冰箱、空调)的浏览次数就会降低,那么LRU策略下优先删除的就是最近一段时间未访问的缓存信息。
  • 外卖平台:每天的11~13点,17~19点,一定是美食外卖品种的高频率访问时间段,而日用品、果蔬生鲜 大都会避开这个高峰期,这时如果内存不够用了,那么就会成为被优先删除的缓存类型。

2.3.2 volatile-lfu:删除访问次数最少的key(4.0 之后新增的策略)

LRU算法的不足之处在于,一个本身很少被访问的key,只是刚刚被访问了1次,就被认为是最近有使用的热点数据,导致短时间内不会被淘汰。
而LFU弥补了这个不足,LFU(Least Frequently Used)淘汰策略会根据key的最近访问频率进行淘汰,解决上面说的这个不足。

  • LFU在LRU的基础上,为每个数据增加了一个计数器,用于统计该数据的访问次数。
  • 当使用LFU策略淘汰数据时,会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出内存。
  • 如果两个缓存数据的访问次数相同,LFU再比较这两个key最近一次的访问时间,把访问时间更早的缓存key淘汰出内存。

常见的应用场景:

  • 对于电商平台中的冷门的商品,电子书App中热度较低、阅读量较低的书籍。这种类型的缓存会优先被淘汰掉。

2.3.3 volatile-random:随机删除过期key

针对有配置过期时间,但没有明显的冷热访问频率区别,所有的查询分布比较均衡的数据。这时候就使用 allkeys-random 策略吧,让它随机选择需要淘汰数据,也相对公平。
常见的使用场景有:

  • 电商平台:常规时段的商品浏览。
  • 钉钉之类工具:老师无差别抽查学生的作业。

2.3.4 volatile-ttl:删除过期时间内剩余时间最短的key

这个特性仅限于配置过期时间的场景,它是根据当前时间 跟 过期时间的差额进行由短到长的排序,较短的优先淘汰。

 asc_sort(validate_time - current_time)

这种算法相对来说也不考虑缓存的访问频率和重要程度,仅按照创建的先后进行清理,越早的缓存越早清理。
所以不具备明显特征的业务场景都适用。

2.3.5 补充说明

业务场景有一些数据始终不需要删除,比如置顶新闻、视频,还有我们自己置顶的weibo。为了保障它们不被清理掉,就给这些数据不设置过期时间,这样的话 volatile类型的淘汰策略就不会影响了。但如果是 allkeys 开头的策略依旧会影响到。

2.3 淘汰所有缓存类型的key

无论是否配置了过期时间的数据均可进行淘汰。
从微服务拆分的角度说,不同的服务类型个方向的服务进行院子隔离会比较一点。这一点设计思维在缓存上依旧适用。
我们可以将不需要过期时间的缓存信息 和 需强制配置过期时间的缓存key分开。针对业务场景分别使用 volatile-xxx 策略 和 allkyes-xxx策略。

2.3.1 allkeys-lru:删除最近最少使用的key

保留最近有使用的key,类似volatile-lru

2.3.2 allkeys-lfu:删除访问次数最少的key

最不经常使用的,类似volatile-lfu

2.3.3 allkeys-random:随机删除过期key

无差别随机删除,volatile-random,为添加新数据腾出空间

2.4 策略命令的使用

# 获取当前内存淘汰策略
redis > config get maxmemory-policy

# 获取Redis能使用的最大内存大小:如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存。
redis > config get maxmemory

#  通过命令配置淘汰策略
redis > config set maxmemory-policy volatile-lru

# 设置Redis最大占用内存大小,这边最大占用内存大小配置为2000M
redis > config set maxmemory 2000mb

3 总结

一张图总结


为帮助开发者们提升面试技能、有机会入职BATJ等大厂公司,特别制作了这个专辑——这一次整体放出。

大致内容包括了: Java 集合、JVM、多线程、并发编程、设计模式、Spring全家桶、Java、MyBatis、ZooKeeper、Dubbo、Elasticsearch、Memcached、MongoDB、Redis、MySQL、RabbitMQ、Kafka、Linux、Netty、Tomcat等大厂面试题等、等技术栈!

欢迎大家关注公众号【Java烂猪皮】,回复【666】,获取以上最新Java后端架构VIP学习资料以及视频学习教程,然后一起学习,一文在手,面试我有。

每一个专栏都是大家非常关心,和非常有价值的话题,如果我的文章对你有所帮助,还请帮忙点赞、好评、转发一下,你的支持会激励我输出更高质量的文章,非常感谢!

相关推荐

【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...

Pure Storage推出统一数据管理云平台及新闪存阵列

PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...

对Java学习的10条建议(对java课程的建议)

不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...

SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!

官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...

JDK21有没有什么稳定、简单又强势的特性?

佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...

「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了

在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...

Java面试题及答案最全总结(2025版)

大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...

数据库日常运维工作内容(数据库日常运维 工作内容)

#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...

分布式之系统底层原理(上)(底层分布式技术)

作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...

oracle 死锁了怎么办?kill 进程 直接上干货

1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...

SpringBoot 各种分页查询方式详解(全网最全)

一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...

《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略

《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...

LoadRunner(loadrunner录制不到脚本)

一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...

Redis数据类型介绍(redis 数据类型)

介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...

RMAN备份监控及优化总结(rman备份原理)

今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...

取消回复欢迎 发表评论: