无需编程,基于Oracle零代码生成CRUD增删改查RESTful API接口
mhr18 2024-09-23 09:40 25 浏览 0 评论
无需编程,基于Oracle零代码生成CRUD增删改查RESTful API接口
回顾
通过之前一篇文章 多数据库支持 的介绍,采用抽象工厂设计模式,已经支持了大象数据库PostgreSQL。之前通过字符串拼接生成DDL SQL语句,比较繁琐。本文开始,引入了FreeMarker模版引擎,通过配置模版实现创建和修改物理表结构SQL语句,简化了大量代码,提高了效率,并且通过配置oracle数据库SQL模版,基于oracle数据库,零代码实现crud增删改查。
FreeMarker简介
FreeMarker是一款模板引擎: 即一种基于模板和要改变的数据,并用来生成输出文本(HTML网页,电子邮件,配置文件,源代码等)的通用工具。 它不是面向最终用户的,而是一个Java类库,是一款程序员可以嵌入他们所开发产品的组件。模板编写为FreeMarker Template Language (FTL)。它是简单的,专用的语言, 不是像PHP那样成熟的编程语言。 那就意味着要准备数据在真实编程语言中来显示,比如数据库查询和业务运算, 之后模板显示已经准备好的数据。在模板中,你可以专注于如何展现数据,而在模板之外可以专注于要展示什么数据。
UI界面
通过产品对象为例,无需编程,基于Oracle数据库,通过配置零代码实现CRUD增删改查RESTful API接口和管理UI。
创建产品
编辑产品数据
产品数据列表
通过Oracle SQL Developer查询Oracle数据
定义元数据对象模型
元数据表ca_meta_table
元数据表ca_meta_table,用于记录表的基本信息。
TableEntity对象
TableEntity为“元数据表”对象,和ca_meta_table字段对应
public class TableEntity {
private Long id;
private String name;
private String caption;
private String description;
private Timestamp createdDate;
private Timestamp lastModifiedDate;
private String pluralName;
private String tableName;
private EngineEnum engine;
private Boolean createPhysicalTable;
private Boolean reverse;
private Boolean systemable;
private Boolean readOnly;
private List<ColumnEntity> columnEntityList;
private List<IndexEntity> indexEntityList;
}
元数据列ca_meta_column
元数据列ca_meta_column,用于记录表字段信息,比如类型,长度,默认值等。
ColumnEntity对象
ColumnEntity为“元数据列”对象,和ca_meta_column字段对应
public class ColumnEntity {
private Long id;
private String name;
private String caption;
private String description;
private Timestamp createdDate;
private Timestamp lastModifiedDate;
private Integer displayOrder;
private DataTypeEnum dataType;
private IndexTypeEnum indexType;
private IndexStorageEnum indexStorage;
private String indexName;
private Integer length;
private Integer precision;
private Integer scale;
private String defaultValue;
private Long seqId;
private Boolean unsigned;
private Boolean autoIncrement;
private Boolean nullable;
private Boolean insertable;
private Boolean updatable;
private Boolean queryable;
private Boolean displayable;
private Boolean systemable;
private Long tableId;
}
元数据索引ca_meta_index
元数据索引ca_meta_index,用于记录表联合索引信息,比如索引类型,名称等。
IndexEntity对象
IndexEntity为“元数据索引”对象,和ca_meta_index字段对应
public class IndexEntity {
private Long id;
private String name;
private String caption;
private String description;
private Timestamp createdDate;
private Timestamp lastModifiedDate;
private IndexTypeEnum indexType;
private IndexStorageEnum indexStorage;
private Long tableId;
private List<IndexLineEntity> indexLineEntityList;
}
元数据索引行ca_meta_index_line
元数据索引行ca_meta_index_line,用于记录表联合索引行信息,一个联合索引可以对应多个联合索引行,表示由多个字段组成。
IndexLineEntity对象
IndexLineEntity“元数据索行”对象,和ca_meta_index_line字段对应
public class IndexLineEntity {
private Long id;
private Long columnId;
private ColumnEntity columnEntity;
private Long indexId;
}
定义FreeMarker模版
创建表create-table.sql.ftl
CREATE TABLE "${tableName}" (
<#list columnEntityList as columnEntity>
<#if columnEntity.dataType == "BOOL">
"${columnEntity.name}" NUMBER(1)<#if columnEntity.defaultValue??> DEFAULT <#if columnEntity.defaultValue == "true">1<#else>0</#if></#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "INT">
"${columnEntity.name}" INT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "BIGINT">
"${columnEntity.name}" INT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "FLOAT">
"${columnEntity.name}" FLOAT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "DOUBLE">
"${columnEntity.name}" REAL<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "DECIMAL">
"${columnEntity.name}" DECIMAL<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "DATE">
"${columnEntity.name}" DATE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "TIME">
"${columnEntity.name}" CHAR(8)<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "DATETIME">
"${columnEntity.name}" DATE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "TIMESTAMP">
"${columnEntity.name}" TIMESTAMP<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "CHAR">
"${columnEntity.name}" CHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "VARCHAR">
"${columnEntity.name}" VARCHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "PASSWORD">
"${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "ATTACHMENT">
"${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "TEXT">
"${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "LONGTEXT">
"${columnEntity.name}" LONG<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "BLOB">
"${columnEntity.name}" BLOB<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#elseif columnEntity.dataType == "LONGBLOB">
"${columnEntity.name}" BLOB<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
<#else>
"${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
</#if>
</#list>
);
<#list columnEntityList as columnEntity>
<#if columnEntity.indexType?? && columnEntity.indexType == "UNIQUE">
ALTER TABLE "${tableName}" ADD CONSTRAINT "${columnEntity.indexName}" UNIQUE("${columnEntity.name}");
</#if>
<#if columnEntity.indexType?? && (columnEntity.indexType == "INDEX" || columnEntity.indexType == "FULLTEXT")>
CREATE INDEX "${columnEntity.indexName}" ON "${tableName}" ("${columnEntity.name}");
</#if>
</#list>
<#if indexEntityList??>
<#list indexEntityList as indexEntity>
<#if indexEntity.indexType?? && indexEntity.indexType == "UNIQUE">
ALTER TABLE "${tableName}" ADD CONSTRAINT "${indexEntity.name}" UNIQUE(<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>);
</#if>
<#if indexEntity.indexType?? && (indexEntity.indexType == "INDEX" || indexEntity.indexType == "FULLTEXT")>
CREATE INDEX "${indexEntity.name}" ON "${tableName}" (<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>);
</#if>
</#list>
</#if>
COMMENT ON TABLE "${tableName}" IS '${caption}';
<#list columnEntityList as columnEntity>
COMMENT ON COLUMN "${tableName}"."${columnEntity.name}" IS '${columnEntity.caption}';
</#list>
模版解析SQL
首先保存元数据信息,下一步传递模版名称和元数据model,动态解析成创建表SQL语句,然后创建物理表,这样元数据和物理表就关联上了。运行时通过解析元数据动态生成insert,select,update,delete等SQL语句,零代码实现业务数据crud功能。
public String processTemplateToString(String database, String templateName, Object dataModel) {
String str = null;
StringWriter stringWriter = new StringWriter();
try {
Configuration config = new Configuration(Configuration.VERSION_2_3_31);
config.setNumberFormat("#");
String templateValue = getTemplate(database, templateName);
if (templateValue == null) {
return str;
}
Template template = new Template(templateName, templateValue, config);
template.process(dataModel, stringWriter);
str = stringWriter.getBuffer().toString().trim();
log.info(str);
} catch (Exception e) {
e.printStackTrace();
throw new BusinessException(ApiErrorCode.DEFAULT_ERROR, e.getMessage());
}
return str;
}
public List<String> toCreateTableSql(TableEntity tableEntity) {
String createTableSql = processTemplateToString("create-table.sql.ftl", tableEntity);
if (createTableSql == null) {
throw new BusinessException(ApiErrorCode.DEFAULT_ERROR, "create-table.sql is empty!");
}
List<String> sqls = new ArrayList<String>();
String[] subSqls = createTableSql.split(";");
for (String t : subSqls) {
String subSql = t.trim();
if (!subSql.isEmpty()) {
sqls.add(t);
}
}
return sqls;
}
public Long create(TableDTO tableDTO) {
TableEntity tableEntity = tableMapper.toEntity(tableDTO);
//TODO
Long tableId = crudService.create(TABLE_TABLE_NAME, tableEntity);
List<String> sqlList = crudService.toCreateTableSql(tableEntity);
for (String sql: sqlList) {
execute(sql);
}
//TODO
return tableId;
}
修改表ftl
包括表结构和索引的修改,删除等,和创建表原理类似。
application.properties
需要根据需要配置数据库连接驱动,无需重新发布,就可以切换不同的数据库。
#oracle
spring.datasource.url=jdbc:oracle:thin:@//localhost:1521/XEPDB1
spring.datasource.driverClassName=oracle.jdbc.OracleDriver
spring.datasource.username=crudapi
spring.datasource.password=crudapi
spring.datasource.initialization-mode=always
spring.datasource.schema=classpath:schema.sql
小结
本文主要介绍了crudapi支持oracle数据库实现原理,并且以产品对象为例,零代码实现了CRUD增删改查RESTful API,后续介绍更多的数据库,比如MSSQL Server,Mongodb等。
实现方式 | 代码量 | 时间 | 稳定性 |
传统开发 | 1000行左右 | 2天/人 | 5个bug左右 |
crudapi系统 | 0行 | 1分钟 | 基本为0 |
综上所述,利用crudapi系统可以极大地提高工作效率和节约成本,让数据处理变得更简单!
crudapi简介
crudapi是crud+api组合,表示增删改查接口,是一款零代码可配置的产品。使用crudapi可以告别枯燥无味地增删改查代码,让您更加专注业务,节约大量成本,从而提高工作效率。 crudapi的目标是让处理数据变得更简单,所有人都可以免费使用! 无需编程,通过配置自动生成crud增删改查RESTful API,提供后台UI管理业务数据。基于主流的开源框架,拥有自主知识产权,支持二次开发。
demo演示
crudapi属于产品级的零代码平台,不同于自动代码生成器,不需要生成Controller、Service、Repository、Entity等业务代码,程序运行起来就可以使用,真正0代码,可以覆盖基本的和业务无关的CRUD RESTful API。
官网地址:https://crudapi.cn
测试地址:
https://demo.crudapi.cn/crudapi/login
附源码地址
GitHub地址
https://github.com/crudapi/crudapi-admin-web
Gitee地址
https://gitee.com/crudapi/crudapi-admin-web
由于网络原因,GitHub可能速度慢,改成访问Gitee即可,代码同步更新。
请点击官网原文链接了解更多和源码:甲骨文oracle数据库 | crudapi
相关推荐
- 【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...
- Pure Storage推出统一数据管理云平台及新闪存阵列
-
PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...
- 对Java学习的10条建议(对java课程的建议)
-
不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...
- SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!
-
官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...
- JDK21有没有什么稳定、简单又强势的特性?
-
佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...
- 「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了
-
在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...
- Java面试题及答案最全总结(2025版)
-
大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...
- 数据库日常运维工作内容(数据库日常运维 工作内容)
-
#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...
- 分布式之系统底层原理(上)(底层分布式技术)
-
作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...
- oracle 死锁了怎么办?kill 进程 直接上干货
-
1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...
- SpringBoot 各种分页查询方式详解(全网最全)
-
一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...
- 《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略
-
《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...
- LoadRunner(loadrunner录制不到脚本)
-
一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...
- Redis数据类型介绍(redis 数据类型)
-
介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...
- RMAN备份监控及优化总结(rman备份原理)
-
今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)