Redis 布隆过滤器总结(redis布隆过滤器使用)
mhr18 2025-05-08 19:57 35 浏览 0 评论
适用场景
大数据判断是否存在来实现去重:这就可以实现出上述的去重功能,如果你的服务器内存足够大的话,那么使用 HashMap 可能是一个不错的解决方案,理论上时间复杂度可以达到 O(1) 的级别,但是当数据量起来之后,还是只能考虑布隆过滤器。
解决缓存穿透:我们经常会把一些热点数据放在 Redis 中当作缓存,例如产品详情。通常一个请求过来之后我们会先查询缓存,而不用直接读取数据库,这是提升性能最简单也是最普遍的做法,但是 如果一直请求一个不存在的缓存,那么此时一定不存在缓存,那就会有大量请求直接打到数据库上,造成 缓存穿透,布隆过滤器也可以用来解决此类问题。
在我们使用 Redis 时候,经常会面临这么一个问题,缓存穿透,意思是数据库和 redis 中都没有数据,缓存和db完全形同虚设。
面对这种问题,我们一般解决办法是设置null 的空值缓存,还有优雅点的实现方式就是布隆过滤器。
空值缓存
String key = stringRedisTemplate.opsForValue().get("key");
if (StringUtil.isEmpty(key)){
//查询db
Object k = "test";
if (k!=null){
//存redis
stringRedisTemplate.opsForValue().set("key",k.toString(),100);
return k.toString();
}else {
stringRedisTemplate.opsForValue().set("key","nullstr",10);
return "";
}
}
if ("nullstr".equals(key)){
stringRedisTemplate.opsForValue().set("key","nullstr",10);
return "";
}
布隆过滤器
对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不 存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可 能不存在;当它说不存在时,那就肯定不存在。
使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,使用时候不能删除,如果有必须重新初始化。
实现原理
布隆过滤器就是一个大型的位数组和几个不一样的无偏 hash 函数。
所谓无偏就是能够把元素的 hash 值算得 比较均匀。
向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度 进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就 完成了 add 操作。
向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位 置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。
如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组 比较稀疏,这个概率就会很大,如果这个位数组比较拥挤,这个概率就会降低。
这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为 复杂, 但是缓存空间占用很少。
布隆过滤器的优点:
- 时间复杂度低,增加和查询元素的时间复杂为O(N),(N为哈希函数的个数,通常情况比较小)
- 保密性强,布隆过滤器不存储元素本身
- 存储空间小,如果允许存在一定的误判,布隆过滤器是非常节省空间的(相比其他数据结构如Set集合)
布隆过滤器的缺点:
- 有点一定的误判率,但是可以通过调整参数来降低
- 无法获取元素本身
- 很难删除元素
数据结构
布隆过滤器它实际上是一个很长的二进制向量和一系列随机映射函数。以Redis中的布隆过滤器实现为例,Redis中的布隆过滤器底层是一个大型位数组(二进制数组)+多个无偏hash函数。
一个大型位数组(二进制数组):
多个无偏hash函数:
无偏hash函数就是能把元素的hash值计算的比较均匀的hash函数,能使得计算后的元素下标比较均匀的映射到位数组中。
如下就是一个简单的布隆过滤器示意图,其中k1、k2代表增加的元素,a、b、c即为无偏hash函数,最下层则为二进制数组。
增加元素的步骤:
通过k个无偏hash函数计算得到k个hash值
依次取模数组长度,得到数组索引
将计算得到的数组索引下标位置数据修改为1
查询元素的步骤:
布隆过滤器最大的用处就在于判断某样东西一定不存在或者可能存在,而这个就是查询元素的结果。其查询元素的过程如下:
通过k个无偏hash函数计算得到k个hash值
依次取模数组长度,得到数组索引
判断索引处的值是否全部为1,如果全部为1则存在(这种存在可能是误判),如果存在一个0则必定不存在
误判的情况: hash函数无法完全避免hash冲突,可能会存在多个元素计算的hash值是相同的,那么它们取模数组长度后的到的数组索引也是相同的,这就是误判的原因。例如彭于晏和程序员(莫打我)的hash值取模后得到的数组索引都是1,但实际上存储的只有彭于晏,如果此时判断程序员在不在这里,误判就出现啦!因此布隆过滤器最大的缺点误判只要知道其判断元素是否存在的原理就很容易明白了!
布隆过滤器不支持删除元素。
代码演示
使用redisson
可以用redisson实现布隆过滤器,引入依赖
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.6.5</version>
</dependency>
实例代码
单Redis节点模式
Config config = new Config();
config.useSingleServer().setAddress("redis://localhost:6379");
//构造Redisson
RedissonClient redisson = Redisson.create(config);
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
//初始化布隆过滤器:预计元素为 100000L ,误差率为3%,根据这两个参数会计算出底层的bit数组大小
bloomFilter.tryInit(100000L,0.03);
//将 test 插入到布隆过滤器中
bloomFilter.add("test");
bloomFilter.add("test2");
//判断下面号码是否在布隆过滤器中
System.out.println(bloomFilter.contains("test3"));//false
System.out.println(bloomFilter.contains("test4"));//false
System.out.println(bloomFilter.contains("test2"));//true
System.out.println(bloomFilter.count()); // 2个元素
System.out.println(bloomFilter.getSize()); // 长度
yaml 配置
---
singleServerConfig:
idleConnectionTimeout: 10000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
password: null
subscriptionsPerConnection: 5
clientName: null
address: "redis://127.0.0.1:6379"
subscriptionConnectionMinimumIdleSize: 1
subscriptionConnectionPoolSize: 50
connectionMinimumIdleSize: 32
connectionPoolSize: 64
database: 0
dnsMonitoringInterval: 5000
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"
集群配置
Config config = new Config();
config.useClusterServers()
.setScanInterval(2000) // 集群状态扫描间隔时间,单位是毫秒
//可以用"rediss://"来启用SSL连接
.addNodeAddress("redis://127.0.0.1:7000", "redis://127.0.0.1:7001")
.addNodeAddress("redis://127.0.0.1:7002");
RedissonClient redisson = Redisson.create(config);
yaml配置
配置集群模式可以通过指定一个YAML格式的文件来实现。以下是YAML格式的配置文件样本。文件中的字段名称必须与ClusterServersConfig和Config对象里的字段名称相符。
---
clusterServersConfig:
idleConnectionTimeout: 10000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
password: null
subscriptionsPerConnection: 5
clientName: null
loadBalancer: !<org.redisson.connection.balancer.RoundRobinLoadBalancer> {}
slaveSubscriptionConnectionMinimumIdleSize: 1
slaveSubscriptionConnectionPoolSize: 50
slaveConnectionMinimumIdleSize: 32
slaveConnectionPoolSize: 64
masterConnectionMinimumIdleSize: 32
masterConnectionPoolSize: 64
readMode: "SLAVE"
nodeAddresses:
- "redis://127.0.0.1:7004"
- "redis://127.0.0.1:7001"
- "redis://127.0.0.1:7000"
scanInterval: 1000
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"
哨兵配置
Config config = new Config();
config.useSentinelServers()
.setMasterName("mymaster")
//可以用"rediss://"来启用SSL连接
.addSentinelAddress("127.0.0.1:26389", "127.0.0.1:26379")
.addSentinelAddress("127.0.0.1:26319");
RedissonClient redisson = Redisson.create(config);
yaml
配置哨兵模式可以通过指定一个YAML格式的文件来实现。以下是YAML格式的配置文件样本。文件中的字段名称必须与SentinelServersConfig和Config对象里的字段名称相符。
---
sentinelServersConfig:
idleConnectionTimeout: 10000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
password: null
subscriptionsPerConnection: 5
clientName: null
loadBalancer: !<org.redisson.connection.balancer.RoundRobinLoadBalancer> {}
slaveSubscriptionConnectionMinimumIdleSize: 1
slaveSubscriptionConnectionPoolSize: 50
slaveConnectionMinimumIdleSize: 32
slaveConnectionPoolSize: 64
masterConnectionMinimumIdleSize: 32
masterConnectionPoolSize: 64
readMode: "SLAVE"
sentinelAddresses:
- "redis://127.0.0.1:26379"
- "redis://127.0.0.1:26389"
masterName: "mymaster"
database: 0
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"
主从模式
Config config = new Config();
config.useMasterSlaveServers()
//可以用"rediss://"来启用SSL连接
.setMasterAddress("redis://127.0.0.1:6379")
.addSlaveAddress("redis://127.0.0.1:6389", "redis://127.0.0.1:6332", "redis://127.0.0.1:6419")
.addSlaveAddress("redis://127.0.0.1:6399");
RedissonClient redisson = Redisson.create(config);
yaml
配置主从模式可以通过指定一个YAML格式的文件来实现。以下是YAML格式的配置文件样本。文件中的字段名称必须与MasterSlaveServersConfig和Config对象里的字段名称相符。
---
masterSlaveServersConfig:
idleConnectionTimeout: 10000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
failedAttempts: 3
password: null
subscriptionsPerConnection: 5
clientName: null
loadBalancer: !<org.redisson.connection.balancer.RoundRobinLoadBalancer> {}
slaveSubscriptionConnectionMinimumIdleSize: 1
slaveSubscriptionConnectionPoolSize: 50
slaveConnectionMinimumIdleSize: 32
slaveConnectionPoolSize: 64
masterConnectionMinimumIdleSize: 32
masterConnectionPoolSize: 64
readMode: "SLAVE"
slaveAddresses:
- "redis://127.0.0.1:6381"
- "redis://127.0.0.1:6380"
masterAddress: "redis://127.0.0.1:6379"
database: 0
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"
使用Google 开源的 Guava 中自带的布隆过滤器
依赖
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>28.0-jre</version>
</dependency>
代码实例
// 创建布隆过滤器对象
BloomFilter<Integer> filter = BloomFilter.create(Funnels.integerFunnel(),
1000,
0.01);
// 判断指定元素是否存在
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));
// 将元素添加进布隆过滤器
filter.put(1);
filter.put(2);
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));
在我们的示例中,当 mightContain() 方法返回 true 时,我们可以 99% 确定该元素在过滤器中,当过滤器返回 false 时,我们可以 100% 确定该元素不存在于过滤器中。
Guava 提供的布隆过滤器的实现还是很不错的 ,但是它是单机使用 ,如果是分布式的场景,需要用到 Redis 中的布隆过滤器了
相关推荐
- 【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...
- Pure Storage推出统一数据管理云平台及新闪存阵列
-
PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...
- 对Java学习的10条建议(对java课程的建议)
-
不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...
- SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!
-
官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...
- JDK21有没有什么稳定、简单又强势的特性?
-
佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...
- 「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了
-
在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...
- Java面试题及答案最全总结(2025版)
-
大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...
- 数据库日常运维工作内容(数据库日常运维 工作内容)
-
#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...
- 分布式之系统底层原理(上)(底层分布式技术)
-
作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...
- oracle 死锁了怎么办?kill 进程 直接上干货
-
1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...
- SpringBoot 各种分页查询方式详解(全网最全)
-
一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...
- 《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略
-
《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...
- LoadRunner(loadrunner录制不到脚本)
-
一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...
- Redis数据类型介绍(redis 数据类型)
-
介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...
- RMAN备份监控及优化总结(rman备份原理)
-
今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)