百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

布隆过滤器,一文总结快速掌握,你能够get多少?

mhr18 2025-04-11 01:16 42 浏览 0 评论

一、前言

假如有一个15亿用户的系统,每天有几亿用户访问系统,要如何快速判断是否为系统中的用户呢?

  • 方法一,将15亿用户存储在数据库中,每次用户访问系统,都到数据库进行查询判断,准确性高,但是查询速度会比较慢。
  • 方法二,将15亿用户缓存在Redis内存中,每次用户访问系统,都到Redis中进行查询判断,准确性高,查询速度也快,但是占用内存极大。即使只存储用户ID,一个用户ID一个字符,则15亿*8字节=12GB,对于一些内存空间有限的服务器来说相对浪费。

还有对于网站爬虫的项目,我们都知道世界上的网站数量及其之多,每当我们爬一个新的网站url时,如何快速判断是否爬虫过了呢?还有垃圾邮箱的过滤,广告电话的过滤等等。如果还是用上面2种方法,显然不是最好的解决方案。

再者,查询是一个系统最高频的操作,当查询一个数据,首先会先到缓存查询(例如Redis),如果缓存没命中,于是到持久层数据库(mongo,mysql等)查询,发现也没有此数据,于是本此查询失败。如果用户很多的时候,并且缓存都没命中,进而全部请求了持久层数据库,这就给数据库带来很大压力,严重可能拖垮数据库。俗称缓存穿透。

可能大家也听到另一个词叫缓存击穿,它是指一个热点key,不停着扛着高并发,突然这个key失效了,在失效的瞬间,大量的请求缓存就没命中,全部请求到数据库。

对于以上这些以及类似的场景,如何高效的解决呢?针对此,布隆过滤器应运而生了。

二、布隆过滤器

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

二进制向量,简单理解就是一个二进制数组。这个数组里面存放的值要么是0,要么是1。

映射函数,它可以将一个元素映射成一个位阵列(Bit array)中的一个点。所以通过这个点,就能判断集合中是否有此元素。

基本思想

  • 当一个元素被加入集合时,通过K个散列函数将这个元素映射到一个位数组中的K个点,把它们置为1。
  • 检索某个元素时,再通过这K个散列函数将这个元素映射,看看这些位置是不是都是1就能知道集合中这个元素存不存在。如果这些位置有任何一个0,则该元素一定不存在;如果都是1,则被检元素很可能存在。

Bloom Filter跟单个哈希函数映射不同,Bloom Filter使用了k个哈希函数,每个元素跟k个bit对应。从而降低了冲突的概率。

优点

  1. 二进制组成的数组,内存占用空间少,并且插入和查询速度很快,常数级别。
  2. Hash函数相互之间没有必然联系,方便由硬件并行实现。
  3. 只存储0和1,不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

缺点

  1. 存在误差率。随着存入的元素数量增加,误算率随之增加。(比如现实中你是否遇到正常邮件也被放入垃圾邮件目录,正常短信被拦截)可以增加一个小的白名单,存储那些可能被误判的元素。
  2. 删除困难。一个元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断。因为其他元素的映射也有可能在相同的位置置为1。可以采用Counting Bloom Filter解决。

三、Redis实现

在Redis中,有一种数据结构叫位图,即bitmap。以下是一些常用的操作命令。

在Redis命令中,SETBIT key offset value,此命令表示将key对应的值的二进制数组,从左向右起,offset下标的二进制数字设置为value。

键k1对应的值为keke,对应ASCII码为107 101 107 101,对应的二进制为 0110 1011,0110 0101,0110 1011,0110 0101。将下标5的位置设置为1,所以变成 0110 1111,0110 0101,0110 1011,0110 0101。即 oeke。

GETBIT key offset命令,它用来获取指定下标的值。

还有一个比较常用的命令,BITCOUNT key [start end],用来获取位图中指定范围值为1的个数。注意,start和end指定的是字节的个数,而不是位数组下标。

Redisson是用于在Java程序中操作Redis的库,利用Redisson我们可以在程序中轻松地使用Redis。Redisson这个客户端工具实现了布隆过滤器,其底层就是通过bitmap这种数据结构来实现的。

Redis 4.0提供了插件功能之后,Redis就提供了布隆过滤器功能。布隆过滤器作为一个插件加载到了Redis Server之中,给Redis提供了强大的布隆去重功能。此文就不细讲了,大家感兴趣的可到官方查看详细文档介绍。它又如下常用命令:

  1. bf.add:添加元素
  2. bf.madd:批量添加元素
  3. bf.exists:检索元素是否存在
  4. bf.mexists:检索多个元素是否存在
  5. bf.reserve:自定义布隆过滤器,设置key,error_rate和initial_size

下面演示是在本地单节点Redis实现的,如果数据量很大,并且误差率又很低的情况下,那单节点内存可能会不足。当然,在集群Redis中,也是可以通过Redisson实现分布式布隆过滤器的。

引入依赖



    org.redisson
    redisson
    3.13.6

代码测试

package com.nobody;

import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;

/**
 * @Description
 * @Author Mr.nobody
 * @Date 2021/3/6
 * @Version 1.0
 */
public class RedissonDemo {

    public static void main(String[] args) {

        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379");
        // config.useSingleServer().setPassword("123456");

        RedissonClient redissonClient = Redisson.create(config);
        // 获取一个redis key为users的布隆过滤器
        RBloomFilter bloomFilter = redissonClient.getBloomFilter("users");

        // 假设元素个数为10万
        int size = 100000;

        // 进行初始化,预计元素为10万,误差率为1%
        bloomFilter.tryInit(size, 0.01);

        // 将1至100000这十万个数映射到布隆过滤器中
        for (int i = 1; i <= size; i++) {
            bloomFilter.add(i);
        }

        // 检查已在过滤器中的值,是否有匹配不上的
        for (int i = 1; i <= size; i++) {
            if (!bloomFilter.contains(i)) {
                System.out.println("存在不匹配的值:" + i);
            }
        }

        // 检查不在过滤器中的1000个值,是否有匹配上的
        int matchCount = 0;
        for (int i = size + 1; i <= size + 1000; i++) {
            if (bloomFilter.contains(i)) {
                matchCount++;
            }
        }
        System.out.println("误判个数:" + matchCount);
    }
}

结果存在的10万个元素都匹配上了;不存在布隆过滤器中的1千个元素,有23个误判。

误判个数:23

四 Guava实现

布隆过滤器有许多实现与优化,Guava中就提供了一种实现。Google Guava提供的布隆过滤器的位数组是存储在JVM内存中,故是单机版的,并且最大位长为int类型的最大值。

  • 使用布隆过滤器时,重要关注点是预估数据量n以及期望的误判率fpp。
  • 实现布隆过滤器时,重要关注点是hash函数的选取以及bit数组的大小。

Bit数组大小选择

根据预估数据量n以及误判率fpp,bit数组大小的m的计算方式:

Guava中源码实现如下:

@VisibleForTesting
static long optimalNumOfBits(long n, double p) {
  if (p == 0) {
    p = Double.MIN_VALUE;
  }
  return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
}

哈希函数选择

哈希函数的个数的选择也是挺讲究的,哈希函数的选择影响着性能的好坏,而且一个好的哈希函数能近似等概率的将元素映射到各个Bit。如何选择构造k个函数呢,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

哈希函数的个数k,可以根据预估数据量n和bit数组长度m计算而来:

Guava中源码实现如下:

@VisibleForTesting
  static int optimalNumOfHashFunctions(long n, long m) {
    // (m / n) * log(2), but avoid truncation due to division!
    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
  }

引入依赖



    com.google.guava
    guava
    28.2-jre

代码测试

package com.nobody;

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;

/**
 * @Description
 * @Author Mr.nobody
 * @Date 2021/3/6
 * @Version 1.0
 */
public class GuavaDemo {

    public static void main(String[] args) {

        // 假设元素个数为10万
        int size = 100000;

        // 预计元素为10万,误差率为1%
        BloomFilter bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, 0.01);

        // 将1至100000这十万个数映射到布隆过滤器中
        for (int i = 1; i <= size; i++) {
            bloomFilter.put(i);
        }

        // 检查已在过滤器中的值,是否有匹配不上的
        for (int i = 1; i <= size; i++) {
            if (!bloomFilter.mightContain(i)) {
                System.out.println("存在不匹配的值:" + i);
            }
        }

        // 检查不在过滤器中的1000个值,是否有匹配上的
        int matchCount = 0;
        for (int i = size + 1; i <= size + 1000; i++) {
            if (bloomFilter.mightContain(i)) {
                matchCount++;
            }
        }
        System.out.println("误判个数:" + matchCount);

    }
}

结果存在的10万个元素都匹配上了;不存在布隆过滤器中的1千个元素,有10个误判。

误判个数:10

当fpp的值改为为0.001,即降低误差率时,误判个数为0个。

误判个数:0

分析结果可知,误判率确实跟我们传入的容错率差不多,而且在布隆过滤器中的元素都匹配到了。

源码分析

通过debug创建布隆过滤器的方法,当预计元素为10万个,fpp的值为0.01时,需要位数958505个,hash函数个数为7个。

当预计元素为10万个,fpp的值为0.001时,需要位数1437758个,hash函数个数为10个。

得出结论

  • 容错率越大,所需空间和时间越小,容错率越小,所需空间和时间越大。
  • 理论上存10万个数,一个int是4字节,即32位,需要320万位。如果使用HashMap存储,按HashMap50%的存储效率,需要640万位。而布隆过滤器即使容错率fpp为0.001,也才需要1437758位,可以看出BloomFilter的存储空间很小。

五 扩展知识点

假如有一台服务器,内存只有4GB,磁盘上有2个大文件,文件A存储100亿个URL,文件B存储100亿个URL。请问如何模糊找出两个文件的URL交集?如何精致找出两个文件的URL交集。

模糊交集:

借助布隆过滤器思想,先将一个文件的URL通过hash函数映射到bit数组中,这样大大减少了内存存储,再读取另一个文件URL,去bit数组中进行匹配。

精致交集:

对大文件进行hash拆分成小文件,例如拆分成1000个小文件(如果服务器内存更小,则可以拆分更多个更小的文件),比如文件A拆分为A1,A2,A3...An,文件B拆分为B1,B2,B3...Bn。而且通过相同的hash函数,相同的URL一定被映射到相同下标的小文件中,例如A文件的www.baidu.com被映射到A1中,那B文件的www.baidu.com也一定被映射到B1文件中。最后再通过求相同下标的小文件(例如A1和B1)(A2和B2)的交集即可。

作者:Mr_nobody
链接:
https://juejin.cn/post/6936557407212404773

来源:掘金

相关推荐

【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...

Pure Storage推出统一数据管理云平台及新闪存阵列

PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...

对Java学习的10条建议(对java课程的建议)

不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...

SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!

官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...

JDK21有没有什么稳定、简单又强势的特性?

佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...

「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了

在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...

Java面试题及答案最全总结(2025版)

大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...

数据库日常运维工作内容(数据库日常运维 工作内容)

#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...

分布式之系统底层原理(上)(底层分布式技术)

作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...

oracle 死锁了怎么办?kill 进程 直接上干货

1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...

SpringBoot 各种分页查询方式详解(全网最全)

一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...

《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略

《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...

LoadRunner(loadrunner录制不到脚本)

一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...

Redis数据类型介绍(redis 数据类型)

介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...

RMAN备份监控及优化总结(rman备份原理)

今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...

取消回复欢迎 发表评论: