3、Redis数据结构——字典-hashtable
mhr18 2025-03-23 21:15 47 浏览 0 评论
字典简介:
字典,又称为符号表(symbol table)、关联数组(associative array)或映射(map),是一种用于保存键值对的抽象数据结构。
字典是一种用于保存键值对的抽象数据结构。由于C没有内置这种数据结构,Redis构建自己的字典实现。
Redis的数据库就是使用字典来作为底层实现的。除了用来实现数据库之外,字典还是哈希键的底层实现之一,当一个哈希键包含的键值对比较多,又或者键值对中的元素都是比较长的字符串时,Redis就会使用字典作为哈希键的底层实现。
1、字典实现
Redis的字典使用哈希表作为底层实现,一个哈希表里面可以有多个哈希表节点,而每个哈希表节点就保存了字典中的一个键值对。
1.1、哈希表定义
typedef struct dictht {
//哈希表数组
dictEntry **table;
//哈希表大小
unsigned long size;
//哈希表大小掩码,总是等于size-1
unsigned long sizemask;
//该哈希表已有节点数量
unsigned long used;
}
table属性是一个数组,数组中的每个元素都是一个指向dict.h/ dictEntry结构的指针,每个dictEntry结果保存着一个键值对。size属性记录了哈希表的大小,也即是table数组的大小,而used属性则记录了哈希表目前已有节点(键值对)的数量。sizemask属性的值总是等于size-1,这个属性和哈希值一起决定了一个键应该被放到table数组的哪个索引上面。下图是一个空哈希表。
1.2、哈希表节点
typedef struct dictEntry {
void *key;
union{
void *val;
uint64_t u64;
int64_t s64;
} v;
//指向下个哈希表节点,形成链表----解决哈希冲突
struct dictEntry *next;
} dictEntry;
key属性保存着键值对中的键,而v属性保存着键值对中的值,其中键值对的值可以是一个指针,或者是一个uint64整数或者是一个int64_t整数。
next属性是指向另一个哈希表节点的指针,这个指针可以将多个哈希值相同的键值对连接在一起,以此来解决键冲突(collision)的问题。
下图展示了将两个索引值相同的键k1和k0连接在一起。
1.3、字典
typedef struct dict {
//类型特定函数
dictType *type;
//私有数据
void *privata;
//哈希表
dictht ht[2];
//rehash索引,当rehash不进行时,为-1
int rehashidx;
}
type属性和privdata属性是针对不同类型的键值对,为创建多态字典而设置的
type:一个指向ditcType结构的指针,每个ditcType结构保存了一簇用于操作特定类型键值对的函数,redis会为用途不同的字典设置不同的类型特定函数。
privata:保存了需要传给那些类型特定函数的的可选参数。
ht属性包含两个项的数组,字典只使用ht[0]哈希表,ht[1]哈希表只会在对ht[0]进行rehash时使用。
除了ht[1]之外,另一个和rehash有关的属性就是rehashidx,它记录了rehash目前的进度,如果目前没有在进行rehash,那么它的值-1。
下图是一个普通状态下的字典
上图是一个没有处在 rehash 状态下的字典。可以看到,字典持有两张哈希表,其中一个的值为 null, 另外一个哈希表的 size=4, 其中两个位置上已经存放了具体的键值对,而且没有发生 hash 冲突。
2、哈希算法
哈希表添加一个元素首先需要计算当前键值 的hash 值,之后根据 hash 值来定位即将被放入的槽。由于 hash 值可能冲突,因此 hash 算法的选择尤其重要,要将 key值 打散得足够均匀。
在 Redis 5.0 以及 4.0 版本,都使用了 siphash 哈希算法。siphash 可以在输入的 key 值很小的情况下,产生随机性比较好的输出。
在 Redis 3.2, 3.0 以及 2.8 版本,使用 Murmurhash2 哈希算法,Murmurhash 可以在输入值是有规律时,也能给出比较好的随机分布。
3、解决键冲突
当有两个或以上数量的键被分配到了哈希表数组的同一个索引上面时,我们称这些键发生了冲突。
Redis的哈希表使用链地址法来解决键冲突,每个哈希表节点都有一个next指针,多个哈希表节点可以用next指针构成一个单向链表,被分配到同一个索引上的多个节点可以用这个单向链表连接起来,这就解决了键冲突的问题。
因为dictEntey节点组成的链表没有指向链表表尾的指针,所以为了速度考虑,程序总是将新节点添加到链表的表头位置(复杂度为0(1)),排在其他已有节点的前面。下图为k2加入到哈希表中出现冲突,加入到链表头之后的情况。
4、扩展与缩容
随着操作不断进行,哈希表保存的键值会逐渐增多或者减少,为了让哈希表负载因子维持在一个合理范围之内,当哈希表保存的键值数量太多或者太少时,就会对哈希表进行相应的扩展或者收缩。
既然想要进行扩展或收缩,那么就需要描述当前表的填充程度,这就有了负载因子概念。计算公式:负载因子=哈希表已保存节点数量/哈希表大小 【load_factor = ht[0].used / ht[0].size】
自动执行扩展操作条件:
- 服务器目前没有执行BGSAVE命令或者BGREWRITEAOF命令,并且负载因子大于等于1进行扩容。
- 服务器目前正在执行BGSAVE命令或者BGREWRITEAOF命令,并且负载因子大于等于5。
- 当哈希表负载因子小于0.1时,程序自动开始对哈希表执行收缩操作。
扩展和收缩通过执行rehash(重新散列)操作来执行。步骤如下:
1)为字典ht[1]哈希表分配空间,空间大小取决于要执行的操作,以及ht[0]当前包含的键值对数量:
- 如果扩展,ht[1]大小等于第一个大于等于ht[0].used*2的n次幂(2的n次方幂)。
- 如果收缩,ht[1]大小等于ht[0].used的2的n次幂(2的n次方幂)。
2)将ht[0]中的所有键值对rehash到ht[1]上面;rehash指的是重新计算键的哈希值和索引值,然后放到指定位置上。
3)当ht[0]所有的键值对都迁移过去后,将ht[1]设置为ht[0],并为ht[1]创建新的空白哈希表,为下一次rehash做准备。
举个例子,如下图
1、ht[0].used当前的值为4,4*2=8,而8(2^3)恰好是第一个大于等于4的2的n次方,所以程序会将ht[1]
哈希表的大小设置为8。下图展示了ht[1]分配空间之后,字典的样子。
2、 将ht[0]包含的四个键值对都rehash到ht[1],如下图
3、 释放ht[0],并将ht[1]设置为ht[0],然后为ht[1]分配一个空白哈希表,如下图,至此,哈希表的扩展操作执行完毕。
5、渐进式rehash
rehash操作并不是一次性、集中式完成的,而是分多次、渐进式完成的。如果在数据量很大的情况下,一次性操作可能会导致服务器一段时间内停止服务。
因此,为了避免rehash对服务器性能造成影响,服务器不是一次性将ht[0]里面的所有键值对全部rehash到ht[1],而是分多次、渐进式的进行。
以下是哈希表渐进式rehash的详细步骤:
1 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表。
2 在字典中维持一个索引计数器变量rehashidx,并将它的值设置为0,表示rehash工作正式开始。
3 在rehash进行期间,每次对字典执行添加、删除、查找或者更新时,程序除了执行指定的操作以外,还顺带将ht[0]哈希表在rehashidx索引上的所有键值对rehash到ht[1],当rehash工作完成之后,程序将将rehashidx属性的值增一。
4 随着字典操作的不断执行,最终在某个时间点上,ht[0]的所有键值对都会被都会被rerhash至ht[1],这时程序程序将rehashidx属性的值设为-1,表示rehash操作已完成。
渐进式rehash的好处在于它采取分而治之的方式,将rehash键值对所需的计算工作均摊到对字典的每个添加、删除、查找和更新操作上,从而避免了集中式rehash而带来的庞大计算量。
6、渐进式rehash执行期间的哈希表操作
进行渐进式rehash的过程中,字典同时使用ht[0]和ht[1]两个哈希表,所以在渐进式rehash进行期间,字典的删除、查找、更新等操作会在两个哈希表上进行。另外,新添加到字典的键值对一律保存到ht[1]里面,而ht[0]则不再进行任何添加操作。这一措施保证了ht[0]包含的键值对数量会只减不增,并随着rehash操作的执行而最终变成空表。。
7、总结
Redis 字典数据结构是面试中高频考题【另外一个是跳表数据结构】。可以多看多思考,彻底攻克它。
Redis 字典中,用 table[2] 的数组保存着两张 hash 表,正常情况下只使用其中一张,在 rehash 的时候使用另外一张表。
Redis 为了提高自己的性能,rehash 过程不是一次性完成的,而是使用了渐进式 hash 的策略,逐步地将原有元素 rehash 到新的哈希表中,直到完成。
最后,欢迎关注我的个人公众号 CodingCode,会不定期更新学习笔记。也欢迎直接公众号私信,一定知无不言,言无不尽。
相关推荐
- 【推荐】一个开源免费、AI 驱动的智能数据管理系统,支持多数据库
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!.前言在当今数据驱动的时代,高效、智能地管理数据已成为企业和个人不可或缺的能力。为了满足这一需求,我们推出了这款开...
- Pure Storage推出统一数据管理云平台及新闪存阵列
-
PureStorage公司今日推出企业数据云(EnterpriseDataCloud),称其为组织在混合环境中存储、管理和使用数据方式的全面架构升级。该公司表示,EDC使组织能够在本地、云端和混...
- 对Java学习的10条建议(对java课程的建议)
-
不少Java的初学者一开始都是信心满满准备迎接挑战,但是经过一段时间的学习之后,多少都会碰到各种挫败,以下北风网就总结一些对于初学者非常有用的建议,希望能够给他们解决现实中的问题。Java编程的准备:...
- SQLShift 重大更新:Oracle→PostgreSQL 存储过程转换功能上线!
-
官网:https://sqlshift.cn/6月,SQLShift迎来重大版本更新!作为国内首个支持Oracle->OceanBase存储过程智能转换的工具,SQLShift在过去一...
- JDK21有没有什么稳定、简单又强势的特性?
-
佳未阿里云开发者2025年03月05日08:30浙江阿里妹导读这篇文章主要介绍了Java虚拟线程的发展及其在AJDK中的实现和优化。阅前声明:本文介绍的内容基于AJDK21.0.5[1]以及以上...
- 「松勤软件测试」网站总出现404 bug?总结8个原因,不信解决不了
-
在进行网站测试的时候,有没有碰到过网站崩溃,打不开,出现404错误等各种现象,如果你碰到了,那么恭喜你,你的网站出问题了,是什么原因导致网站出问题呢,根据松勤软件测试的总结如下:01数据库中的表空间不...
- Java面试题及答案最全总结(2025版)
-
大家好,我是Java面试陪考员最近很多小伙伴在忙着找工作,给大家整理了一份非常全面的Java面试题及答案。涉及的内容非常全面,包含:Spring、MySQL、JVM、Redis、Linux、Sprin...
- 数据库日常运维工作内容(数据库日常运维 工作内容)
-
#数据库日常运维工作包括哪些内容?#数据库日常运维工作是一个涵盖多个层面的综合性任务,以下是详细的分类和内容说明:一、数据库运维核心工作监控与告警性能监控:实时监控CPU、内存、I/O、连接数、锁等待...
- 分布式之系统底层原理(上)(底层分布式技术)
-
作者:allanpan,腾讯IEG高级后台工程师导言分布式事务是分布式系统必不可少的组成部分,基本上只要实现一个分布式系统就逃不开对分布式事务的支持。本文从分布式事务这个概念切入,尝试对分布式事务...
- oracle 死锁了怎么办?kill 进程 直接上干货
-
1、查看死锁是否存在selectusername,lockwait,status,machine,programfromv$sessionwheresidin(selectsession...
- SpringBoot 各种分页查询方式详解(全网最全)
-
一、分页查询基础概念与原理1.1什么是分页查询分页查询是指将大量数据分割成多个小块(页)进行展示的技术,它是现代Web应用中必不可少的功能。想象一下你去图书馆找书,如果所有书都堆在一张桌子上,你很难...
- 《战场兄弟》全事件攻略 一般事件合同事件红装及隐藏职业攻略
-
《战场兄弟》全事件攻略,一般事件合同事件红装及隐藏职业攻略。《战场兄弟》事件奖励,事件条件。《战场兄弟》是OverhypeStudios制作发行的一款由xcom和桌游为灵感来源,以中世纪、低魔奇幻为...
- LoadRunner(loadrunner录制不到脚本)
-
一、核心组件与工作流程LoadRunner性能测试工具-并发测试-正版软件下载-使用教程-价格-官方代理商的架构围绕三大核心组件构建,形成完整测试闭环:VirtualUserGenerator(...
- Redis数据类型介绍(redis 数据类型)
-
介绍Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及Zset(sortedset:有序集合)。1、字符串类型概述1.1、数据类型Redis支持...
- RMAN备份监控及优化总结(rman备份原理)
-
今天主要介绍一下如何对RMAN备份监控及优化,这里就不讲rman备份的一些原理了,仅供参考。一、监控RMAN备份1、确定备份源与备份设备的最大速度从磁盘读的速度和磁带写的带度、备份的速度不可能超出这两...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)