高并发技巧-redis热key问题处理技巧
mhr18 2024-12-07 21:52 35 浏览 0 评论
这篇文章我将介绍工作中处理热key问题的常用手段,可能介绍得不是很全,毕竟不同的业务场景可能有不同的解决方案,但是相信通过这部分的介绍能提供一个热key问题的思路。
热key问题,简单来说就是对某一资源的访问量过高问题,再简单一点来说就是对某个资源访问的qps过高,而解决访问量高的问题通常我们使用分布式缓存,最常见的就是redis,这个资源对应redis的一个key简称热key。热key在开发中是非常常见的,比如各种app的榜单,活动页面上的一些资源。
虽然redis号称单节点能扛住10Wqps,但是开发中肯定不能这样去估计,毕竟安全第一,比如5000似乎就可能就可以作为上限。如果超过5000该怎么处理呢?下面将提供几种常见的解决方案。
冗余写/随机读
假设在做活动,活动总金额为amount,用户每次完成任务会得到一笔奖金,每天结算一次,在页面会展示剩余金额restAmount。我们将剩余金额存到redis中,{key: pool, value: restAmount}
由于每天统一结算,所以写的qps不会很高,毕竟我们能自己控制流量,比如用户完成后发个延迟结算消息到mq,然后由消费者来处理计算剩余金额最后更新到redis中。
但是在页面的读的qps是很高的。显然奖池pool就是个热key。
既然单节点扛不住,那么显然可以将数据写到N个节点上,也就是将奖池存到多个节点,在页面读取的时候随机选一个节点去读。假如有10W的qps,N=10,那么每个节点的流量就成了1W的qps。
大key问题与分shard处理
上门介绍的奖池问题显然不是大key问题,工作中常见的大key问题通常涉及到批量用户存储在set或者map中。举个不恰当的例子(之所以说不恰当是因为大量数据判存完全可以使用布隆过滤器)。假如同时存在若干个活动,对于每个活动,如果用户完成了,需要记录下用户完成情况,在后续页面进行对应的完成情况展示。这里可以使用map来处理,{key:activityId, value:{field:userId, value:完成情况}}
那么这显然是一个大key问题,同时也是个热点问题。但是用上面介绍的办法能解决热key问题,解决不了大key问题。
解决这个问题其实也可以采用分而治之的思路,就是将大key拆分为若干小key,并且尽量让若干小key存在不同的redis节点中。
比如对于一个活动id我可以分为10个shard,{shard_1,...,shard_10},使用userId%10得到归属的shard。
这样每次判断取出用户完成情况,就先找到对应活动的shard然后拿出该用户即可。如果要拿出活动下的所有用户来做榜单,则只需要将所有shard都拿出来排序即可;
由于不同的shard在不同的redis节点,这样就又解决了热点问题。
本地缓存
如果条件允许的话,也就是本地缓存够用,或者说数据量不是很大,同时能够接受一定的延迟的话,那么可以直接使用本地缓存。这里就以guava的LoadingCache为例。
以奖池的例子来说,数据量小的忽略不计,因为结算时同一结算并更新奖池,也就是说一天中23个多小时数据都不会变,变动的时间也很短,所以我们可以接受一定的延迟,只要记得讲本地缓存过期时间设置短一点,比如10分钟。
此外需要有个地方供过期后的本地缓存读取,可以使用db或者redis,这样每次更新数据的时候就得更新db或者redis。为了防止击穿,记得使用load-miss方法。
LoadingCache<String, String> cache = CacheBuilder.newBuilder()
.maximumSize(1000L)
.expireAfterAccess(Duration.ofSeconds(600L))
.expireAfterWrite(Duration.ofSeconds(600L))
.build(new CacheLoader<String, String>() {
@Override
public String load(String key) throws Exception {
// load from db
}
});
String restAmount = cache.get("pool");
复制代码
使用Memcached
这在公司基础架构用得会更多一点,为什么可以使用memcached,看下面两段话的介绍就知道了.
- Redis是单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题;性能受限于CPU,单实例QPS在4-6w。Memcached是多线程,可以利用多核优势,单实例在正常情况下,可以达到写入60-80w qps,读80-100w qps。
- Redis的big key与热key类操作,如果qps较高则容易造成redis阻塞,影响整体请求。Memcached因为是多线程,与redis相比,在big key与热key类操作上支持较好。
作者:可以回家加班吗
链接:https://juejin.cn/post/7159809554674122759
来源:稀土掘金
- 上一篇:《高并发解决方案》高并发解决方案汇总
- 下一篇:电商库存系统的防超卖和高并发扣减方案
相关推荐
- Dubai's AI Boom Lures Global Tech as Emirate Reinvents Itself as Middle East's Silicon Gateway
-
AI-generatedimageAsianFin--Dubaiisrapidlytransformingitselffromadesertoilhubintoaglob...
- OpenAI Releases o3-pro, Cuts o3 Prices by 80% as Deal with Google Cloud Reported to Make for Compute Needs
-
TMTPOST--OpenAIisescalatingthepricewarinlargelanguagemodel(LLM)whileseekingpartnershi...
- 黄仁勋说AI Agent才是未来!但究竟有些啥影响?
-
,抓住风口(iOS用户请用电脑端打开小程序)本期要点:详解2025年大热点你好,我是王煜全,这里是王煜全要闻评论。最近,有个词被各个科技大佬反复提及——AIAgent,智能体。黄仁勋在CES展的发布...
- 商城微服务项目组件搭建(五)——Kafka、Tomcat等安装部署
-
1、本文属于mini商城系列文档的第0章,由于篇幅原因,这篇文章拆成了6部分,本文属于第5部分2、mini商城项目详细文档及代码见CSDN:https://blog.csdn.net/Eclipse_...
- Python+Appium环境搭建与自动化教程
-
以下是保姆级教程,手把手教你搭建Python+Appium环境并实现简单的APP自动化测试:一、环境搭建(Windows系统)1.安装Python访问Python官网下载最新版(建议...
- 零配置入门:用VSCode写Java代码的正确姿
-
一、环境准备:安装JDK,让电脑“听懂”Java目标:安装Java开发工具包(JDK),配置环境变量下载JDKJava程序需要JDK(JavaDevelopmentKit)才能运行和编译。以下是两...
- Mycat的搭建以及配置与启动(mycat2)
-
1、首先开启服务器相关端口firewall-cmd--permanent--add-port=9066/tcpfirewall-cmd--permanent--add-port=80...
- kubernetes 部署mysql应用(k8s mysql部署)
-
这边仅用于测试环境,一般生产环境mysql不建议使用容器部署。这里假设安装mysql版本为mysql8.0.33一、创建MySQL配置(ConfigMap)#mysql-config.yaml...
- Spring Data Jpa 介绍和详细入门案例搭建
-
1.SpringDataJPA的概念在介绍SpringDataJPA的时候,我们首先认识下Hibernate。Hibernate是数据访问解决技术的绝对霸主,使用O/R映射(Object-Re...
- 量子点格棋上线!“天衍”邀您执子入局
-
你是否能在策略上战胜量子智能?这不仅是一场博弈更是一次量子智力的较量——量子点格棋正式上线!试试你能否赢下这场量子智局!游戏玩法详解一笔一画间的策略博弈游戏目标:封闭格子、争夺领地点格棋的基本目标是利...
- 美国将与阿联酋合作建立海外最大的人工智能数据中心
-
当地时间5月15日,美国白宫宣布与阿联酋合作建立人工智能数据中心园区,据称这是美国以外最大的人工智能园区。阿布扎比政府支持的阿联酋公司G42及多家美国公司将在阿布扎比合作建造容量为5GW的数据中心,占...
- 盘后股价大涨近8%!甲骨文的业绩及指引超预期?
-
近期,美股的AI概念股迎来了一波上升行情,微软(MSFT.US)频创新高,英伟达(NVDA.US)、台积电(TSM.US)、博通(AVGO.US)、甲骨文(ORCL.US)等多股亦出现显著上涨。而从基...
- 甲骨文预计新财年云基础设施营收将涨超70%,盘后一度涨8% | 财报见闻
-
甲骨文(Oracle)周三盘后公布财报显示,该公司第四财季业绩超预期,虽然云基建略微逊于预期,但管理层预计2026财年云基础设施营收预计将增长超过70%,同时资本支出继上年猛增三倍后,新财年将继续增至...
- Springboot数据访问(整合MongoDB)
-
SpringBoot整合MongoDB基本概念MongoDB与我们之前熟知的关系型数据库(MySQL、Oracle)不同,MongoDB是一个文档数据库,它具有所需的可伸缩性和灵活性,以及所需的查询和...
- Linux环境下,Jmeter压力测试的搭建及报错解决方法
-
概述 Jmeter最早是为了测试Tomcat的前身JServ的执行效率而诞生的。到目前为止,它的最新版本是5.3,其测试能力也不再仅仅只局限于对于Web服务器的测试,而是涵盖了数据库、JM...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Dubai's AI Boom Lures Global Tech as Emirate Reinvents Itself as Middle East's Silicon Gateway
- OpenAI Releases o3-pro, Cuts o3 Prices by 80% as Deal with Google Cloud Reported to Make for Compute Needs
- 黄仁勋说AI Agent才是未来!但究竟有些啥影响?
- 商城微服务项目组件搭建(五)——Kafka、Tomcat等安装部署
- Python+Appium环境搭建与自动化教程
- 零配置入门:用VSCode写Java代码的正确姿
- Mycat的搭建以及配置与启动(mycat2)
- kubernetes 部署mysql应用(k8s mysql部署)
- Spring Data Jpa 介绍和详细入门案例搭建
- 量子点格棋上线!“天衍”邀您执子入局
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle 空为0 (51)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)