分布式日志管理系统:从ELK到EFK
mhr18 2024-12-06 16:10 21 浏览 0 评论
在我们的服务器上通常会生成各种日志文件,比如系统日志、 应用日志、安全日志。当系统发生故障时,工程师需要登录到服务器上,在日志里查找故障原因。
如果定位到处理请求的服务器部署了多个实例,那么就需要到每个实例的日志目录下去查看日志。另外每个服务器实例还需要设置日志滚动策略,比如每天生成一个文件,以及日志压缩归档策略等。
管理分布式集群的多台服务器的日志,是很麻烦的事情。尤其是排查故障的时候,服务器太多通过日志找故障太麻烦。因此需要把这些服务器的日志集中管理,并提供集中检索功能,这样就可以提高故障诊断的效率。
业界通用的日志数据管理方案主要包括 Elasticsearch 、 Logstash 和 Kibana 三个组件,这三个组件又先后被收购于Elastic.co公司名下。取三个组件的首字母,业界把这套方案简称为ELK。
什么是ELK?
Logstash :数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。
Elasticsearch :分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点,可以用于全文检索、结构化检索和分析。ES 基于 Lucene 开发,Lucene是现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于Lucene来构建搜索引擎。
Kibana :可视化平台。能够搜索、展示存储在 Elasticsearch 中的索引数据,使用Kibana可以很方便地用图表、表格、地图展示和分析数据。
Logstash部署架构
常见的Logstash的部署架构如下图所示,主要由Shipper、Broker和Indexer三个角色组成。
- Shipper:日志收集者,也就是Agent。负责监控本地日志文件的变化,及时读取日志文件的最新内容,经过处理输出到Broker。
- Broker:日志Hub,用来连接多个Shipper和多个Indexer。Redis是Logstash官方推荐的Broker,支持订阅发布和队列两种数据传输模式。
- Indexer:日志存储者。负责从Redis接收日志,经过处理,比如对文本进行格式化,之后写入到本地文件。
无论是Shipper还是Indexer,Logstash始终只做三件事:日志的收集、过滤和输出。主要由三个部分组成:Input 、Filter、Output。
Input(输入):Logstash实例通过Input插件可以读取多种数据源,输入数据可以是Java日志、Nginx日志 、TCP连接、控制台输入 、Syslog(系统日志)、Redis 、Collectd(系统监控守护进程)等。
Filter(过滤):通过Filter插件可以将日志转换为我们需要的格式。Logstash 提供了丰富的Filter插件,包括date(日志解析)、grok(正则解析)、dissect(分隔符解析)、mutate(字段处理)、json解析、geoip(地理位置数据解析)、ruby等。
Output(输出):通过 Output 插件可以实现数据的多份复制输出,输出目标可以是控制台、Redis 、TCP 、文件、Email等,目前业内常用的输出方式是和搜索引擎Elasticsearch来对接。
接下来我们看一下Logstash与ES如何配合实现ELK架构。
ELK架构
数据收集端:每台服务器都在上面部署 Logstash Shipper来收集日志,经过处理传输到 Elasticsearch 集群。
数据存储与搜索:采用多个 Elasticsearch 节点组成 Elasticsearch 集群,采用集群模式运行,可以避免单个实例压力过重的问题。
数据展示:Kibana 可以根据 Elasticsearch 的数据来绘制各种各样的图表,直观的展示业务实时状况。
加入队列的ELK
当并发量较大的时候,由于日志传输峰值较高,会导致 Elasticsearch 集群丢失数据。对于这种Logstash数据超过ES集群处理能力的情况,可以通过队列就能起到削峰填谷的作用, Elasticsearch 集群就不存在丢失数据的问题。
目前业界在日志服务场景中,使用比较多的两种消息队列是Kafka和Redis。Redis 队列多用于实时性较高的消息推送,并不保证可靠。Kafka保证可靠但有点延时。
轻量级的Agent方案:Filebeat
Filebeat 是基于原先 logstash-forwarder 的源码改造出来的,用 Golang 编写,无需依赖 Java 环境就能运行,安装包10M不到。
Filebeat效率高,占用内存和 CPU 比较少,可以解决在服务器上部署Logstash shipper消耗资源较高的问题,非常适合作为日志收集系统的Agent运行在服务器上。
ELK/EFK总结
基于 ELK或EFK的分布式日志解决方案的优势主要体现在以下几个方面:
- 扩展性强:采用高可扩展性的分布式系统架构设计,可以支持每日 TB 级别的新增数据。
- 使用简单:通过用户图形界面实现各种统计分析功能,简单易用,上手快
- 响应迅速:从日志产生到查询可见,能达到秒级完成数据的采集、处理和搜索统计。
- 界面美观:Kibana 界面上,只需要点击鼠标,就可以完成搜索、聚合功能,生成炫丽的仪表板。
对于除了ELK方案以外,在分布式日志管理上,我们还有很多其他的选择。近年来随着大数据的发展,海量数据采集组件Flume也开始广泛应用于分布式日志解决方案中。因为没有太多日志分析需求,我的团队采用了更轻量级的方案:Loki + promtail + grafana,建立类似Prometheus的日志监控系统,promtail负责收集日志,Loki负责存储,grafana负责展示。
我会持续更新关于物联网、云原生以及数字科技方面的文章,用简单的语言描述复杂的技术,也会偶尔发表一下对IT产业的看法,欢迎大家关注,谢谢。
相关推荐
- 使用 Docker 部署 Java 项目(通俗易懂)
-
前言:搜索镜像的网站(推荐):DockerDocs1、下载与配置Docker1.1docker下载(这里使用的是Ubuntu,Centos命令可能有不同)以下命令,默认不是root用户操作,...
- Spring Boot 3.3.5 + CRaC:从冷启动到秒级响应的架构实践与踩坑实录
-
去年,我们团队负责的电商订单系统因扩容需求需在10分钟内启动200个Pod实例。当运维组按下扩容按钮时,传统SpringBoot应用的冷启动耗时(平均8.7秒)直接导致流量洪峰期出现30%的请求超时...
- 《github精选系列》——SpringBoot 全家桶
-
1简单总结1SpringBoot全家桶简介2项目简介3子项目列表4环境5运行6后续计划7问题反馈gitee地址:https://gitee.com/yidao620/springbo...
- Nacos简介—1.Nacos使用简介
-
大纲1.Nacos的在服务注册中心+配置中心中的应用2.Nacos2.x最新版本下载与目录结构3.Nacos2.x的数据库存储与日志存储4.Nacos2.x服务端的startup.sh启动脚...
- spring-ai ollama小试牛刀
-
序本文主要展示下spring-aiollama的使用示例pom.xml<dependency><groupId>org.springframework.ai<...
- SpringCloud系列——10Spring Cloud Gateway网关
-
学习目标Gateway是什么?它有什么作用?Gateway中的断言使用Gateway中的过滤器使用Gateway中的路由使用第1章网关1.1网关的概念简单来说,网关就是一个网络连接到另外一个网络的...
- Spring Boot 自动装配原理剖析
-
前言在这瞬息万变的技术领域,比了解技术的使用方法更重要的是了解其原理及应用背景。以往我们使用SpringMVC来构建一个项目需要很多基础操作:添加很多jar,配置web.xml,配置Spr...
- 疯了!Spring 再官宣惊天大漏洞
-
Spring官宣高危漏洞大家好,我是栈长。前几天爆出来的Spring漏洞,刚修复完又来?今天愚人节来了,这是和大家开玩笑吗?不是的,我也是猝不及防!这个玩笑也开的太大了!!你之前看到的这个漏洞已...
- 「架构师必备」基于SpringCloud的SaaS型微服务脚手架
-
简介基于SpringCloud(Hoxton.SR1)+SpringBoot(2.2.4.RELEASE)的SaaS型微服务脚手架,具备用户管理、资源权限管理、网关统一鉴权、Xss防跨站攻击、...
- SpringCloud分布式框架&分布式事务&分布式锁
-
总结本文承接上一篇SpringCloud分布式框架实践之后,进一步实践分布式事务与分布式锁,其中分布式事务主要是基于Seata的AT模式进行强一致性,基于RocketMQ事务消息进行最终一致性,分布式...
- SpringBoot全家桶:23篇博客加23个可运行项目让你对它了如指掌
-
SpringBoot现在已经成为Java开发领域的一颗璀璨明珠,它本身是包容万象的,可以跟各种技术集成。本项目对目前Web开发中常用的各个技术,通过和SpringBoot的集成,并且对各种技术通...
- 开发好物推荐12之分布式锁redisson-sb
-
前言springboot开发现在基本都是分布式环境,分布式环境下分布式锁的使用必不可少,主流分布式锁主要包括数据库锁,redis锁,还有zookepper实现的分布式锁,其中最实用的还是Redis分...
- 拥抱Kubernetes,再见了Spring Cloud
-
相信很多开发者在熟悉微服务工作后,才发现:以为用SpringCloud已经成功打造了微服务架构帝国,殊不知引入了k8s后,却和CloudNative的生态发展脱轨。从2013年的...
- Zabbix/J监控框架和Spring框架的整合方法
-
Zabbix/J是一个Java版本的系统监控框架,它可以完美地兼容于Zabbix监控系统,使得开发、运维等技术人员能够对整个业务系统的基础设施、应用软件/中间件和业务逻辑进行全方位的分层监控。Spri...
- SpringBoot+JWT+Shiro+Mybatis实现Restful快速开发后端脚手架
-
作者:lywJee来源:cnblogs.com/lywJ/p/11252064.html一、背景前后端分离已经成为互联网项目开发标准,它会为以后的大型分布式架构打下基础。SpringBoot使编码配置...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)