如何让你的Python程序,定时定点地去执行任务?
mhr18 2024-12-05 15:08 24 浏览 0 评论
apscheduler 的使用
??我们项目中总是避免不了要使用一些定时任务,比如说最近的项目,用户点击报名考试以后需要在考试日期临近的时候推送小程序消息提醒到客户微信上,翻了翻 fastapi 中的实现,虽然方法和包也不少,但是要不就是太重了(比如需要再开服务,还要依赖 redis,都不好用),虽然也可以使用 time 模块的 time.sleep()机上 fastapi 的后台任务变相实现,但是相对简单的功能还行,复杂点的代码起来就麻烦了,所以还是专人专事找个负责这个额的包吧。找来找去发现 APScheduler 就挺适合,代码简单,实现效果也很好,这里做个记录!
安装
pip install apscheduler
主要组成部分
概念性东西,混个脸熟,代码比这些定义好理解。
触发器(trigger)包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行。除了他们自己初始配置意外,触发器完全是无状态的。说人话就是你指定那种方式触发当前的任务。
干货主要有:
① 200 多本 Python 电子书(和经典的书籍)应该有
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且可靠的练手项目及源码)
④ Python基础入门、爬虫、网络开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
私信小编01即可获取大量Python学习资源
类型 | 解释 |
DateTrigger | 到期执行(到xxxx年x月x日 x时x分x秒执行) 对应DateTrigger |
IntervalTrigger | 间隔执行(每5秒执行一次) |
CronTrigger | 一个crontab类型的条件(这个比较复杂,比如周一到周四的4-5点每5秒执行一次) |
作业存储(job store)存储被调度的作业,默认的作业存储是简单地把作业保存在内存中,其他的作业存储是将作业保存在数据库中。一个作业的数据讲在保存在持久化作业存储时被序列化,并在加载时被反序列化。调度器不能分享同一个作业存储。
Jobstore在scheduler中初始化,另外也可通过scheduler的add_jobstore动态添加Jobstore。每个jobstore
都会绑定一个alias,scheduler在Add Job时,根据指定的jobstore在scheduler中找到相应的jobstore,并
将job添加到jobstore中。
Jobstore主要是通过pickle库的loads和dumps【实现核心是通过python的__getstate__和__setstate__重写
实现】,每次变更时将Job动态保存到存储中,使用时再动态的加载出来,作为存储的可以是redis,也可以
是数据库【通过sqlarchemy这个库集成多种数据库】,也可以是mongodb等
目前APScheduler支持的Jobstore:
MemoryJobStore
MongoDBJobStore
RedisJobStore
RethinkDBJobStore
SQLAlchemyJobStore
ZooKeeperJobStore
执行器(executor)处理作业的运行,他们通常通过在作业中提交制定的可调用对象到一个线程或者进城池来进行。当作业完成时,执行器将会通知调度器。
- 说人话就是添加任务时候用它来包装的,executor的种类会根据不同的调度来选择,如果选择AsyncIO作为调度的库,那么选择AsyncIOExecutor,如果选择tornado作为调度的库,选择TornadoExecutor,如果选择启动进程作为调度,选择ThreadPoolExecutor或者ProcessPoolExecutor都可以Executor的选择需要根据实际的scheduler来选择不同的执行器
目前APScheduler支持的Executor:
AsyncIOExecutor
GeventExecutor
ThreadPoolExecutor
ProcessPoolExecutor
TornadoExecutor
TwistedExecutor
调度器(scheduler)是其他的组成部分。你通常在应用只有一个调度器,应用的开发者通常不会直接处理作业存储、调度器和触发器,相反,调度器提供了处理这些的合适的接口。配置作业存储和执行器可以在调度器中完成,例如添加、修改和移除作业.
Scheduler是APScheduler的核心,所有相关组件通过其定义。scheduler启动之后,将开始按照配置的任务进行调度。
除了依据所有定义Job的trigger生成的将要调度时间唤醒调度之外。当发生Job信息变更时也会触发调度。
scheduler可根据自身的需求选择不同的组件,如果是使用AsyncIO则选择AsyncIOScheduler,使用tornado则
选择TornadoScheduler。
目前APScheduler支持的Scheduler:
AsyncIOScheduler
BackgroundScheduler
BlockingScheduler
GeventScheduler
QtScheduler
TornadoScheduler
TwistedScheduler
简单应用
import time
from apscheduler.schedulers.blocking import BlockingScheduler # 引入后台
def my_job():
print time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
sched = BlockingScheduler()
sched.add_job(my_job, 'interval', seconds=5)
sched.start()
完整代码
# trigeers 触发器
# job stores job 存储
# executors 执行器
# schedulers 调度器
from pytz import utc
from sqlalchemy import func
from apscheduler.schedulers.background import BackgroundScheduler,AsyncIOScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ProcessPoolExecutor
jobstores = {
# 可以配置多个存储
#'mongo': {'type': 'mongodb'},
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite') # SQLAlchemyJobStore指定存储链接
}
executors = {
'default': {'type': 'threadpool', 'max_workers': 20}, # 最大工作线程数20
'processpool': ProcessPoolExecutor(max_workers=5) # 最大工作进程数为5
}
job_defaults = {
'coalesce': False, # 关闭新job的合并,当job延误或者异常原因未执行时
'max_instances': 3 # 并发运行新job默认最大实例多少
}
scheduler = BackgroundScheduler()
# .. do something else here, maybe add jobs etc.
scheduler.configure(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc) # utc作为调度程序的时区
import os
import time
def print_time(name):
print(f'{name} - {time.ctime()}')
def add_job(job_id, func, args, seconds):
"""添加job"""
print(f"添加间隔执行任务job - {job_id}")
scheduler.add_job(id=job_id, func=func, args=args, trigger='interval', seconds=seconds)
def add_coun_job(job_id, func, args, start_time):
"""添加job"""
print(f"添加一次执行任务job - {job_id}")
scheduler.add_job(id=job_id, func=func, args=args, trigger='date',timezone='Asia/Shanghai', run_date=start_time)
# scheduler.add_job(func=print_time, trigger='date',timezone='Asia/Shanghai', run_date=datetime(2022, 2, 19, 17, 57, 0).astimezone(), args=['text2'])
def remove_job(job_id):
"""移除job"""
scheduler.remove_job(job_id)
print(f"移除job - {job_id}")
def pause_job(job_id):
"""停止job"""
scheduler.pause_job(job_id)
print(f"停止job - {job_id}")
def resume_job(job_id):
"""恢复job"""
scheduler.resume_job(job_id)
print(f"恢复job - {job_id}")
def get_jobs():
"""获取所有job信息,包括已停止的"""
res = scheduler.get_jobs()
print(f"所有job - {res}")
def print_jobs():
print(f"详细job信息")
scheduler.print_jobs()
def start():
"""启动调度器"""
scheduler.start()
def shutdown():
"""关闭调度器"""
scheduler.shutdown()
if __name__ == '__main__':
scheduler = BackgroundScheduler()
# start()
# print('Press Ctrl+{0} to exit \n'.format('Break' if os.name == 'nt' else 'C'))
# add_job('job_A', func=print_time, args=("A", ), seconds=1)
# add_job('job_B', func=print_time, args=("B", ), seconds=2)
# time.sleep(6)
# pause_job('job_A') # 停止a
# get_jobs() #得到所有job
# time.sleep(6)
# print_jobs()
# resume_job('job_A')
# time.sleep(6)
# remove_job('job_A')
# time.sleep(6)
from datetime import datetime
import pytz
start()
date_temp = datetime(2022, 2, 19, 17, 30, 5)
# scheduler.add_job(print_time, 'date', run_date=datetime.now(pytz.timezone('America/Manaus')), args=['text'])
# scheduler.add_job(print_time, 'date',timezone='Asia/Shanghai', run_date=datetime(2022, 2, 19, 17, 57, 0).astimezone(), args=['text2'])
add_coun_job(job_id="job_C",func=print_time,args=('一次性执行任务',),start_time=datetime(2022, 2, 19, 18, 4, 0).astimezone())
time.sleep(130)
try:
shutdown()
except RuntimeError:
pass
- 上一篇:高级Java程序员必问,Redis事务终极篇
- 下一篇:聊聊定时任务的六种模式
相关推荐
- Docker安装详细步骤及相关环境安装配置
-
最近自己在虚拟机上搭建一个docker,将项目运行在虚拟机中。需要提前准备的工具,FinallShell(远程链接工具),VM(虚拟机-配置网络)、CentOS7(Linux操作系统-在虚拟机上安装)...
- Linux下安装常用软件都有哪些?做了一个汇总列表,你看还缺啥?
-
1.安装列表MySQL5.7.11Java1.8ApacheMaven3.6+tomcat8.5gitRedisNginxpythondocker2.安装mysql1.拷贝mysql安装文件到...
- Nginx安装和使用指南详细讲解(nginx1.20安装)
-
Nginx安装和使用指南安装1.检查并安装所需的依赖软件1).gcc:nginx编译依赖gcc环境安装命令:yuminstallgcc-c++2).pcre:(PerlCompatibleRe...
- docker之安装部署Harbor(docker安装hacs)
-
在现代软件开发和部署环境中,Harbor作为一个企业级的容器镜像仓库,提供了高效、安全的镜像管理解决方案。通过Docker部署Harbor,可以轻松构建私有镜像仓库,满足企业对镜像存储、管理和安全性...
- 成功安装 Magento2.4.3最新版教程「技术干货」
-
外贸独立站设计公司xingbell.com经过多次的反复实验,最新版的magento2.4.3在oneinstack的环境下的详细安装教程如下:一.vps系统:LinuxCentOS7.7.19...
- 【Linux】——从0到1的学习,让你熟练掌握,带你玩转Linu
-
学习Linux并掌握Java环境配置及SpringBoot项目部署是一个系统化的过程,以下是从零开始的详细指南,帮助你逐步掌握这些技能。一、Linux基础入门1.安装Linux系统选择发行版:推荐...
- cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务
-
cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务(yum选择的,时间不同,版本不同)如果对运维课程感兴趣,可以在b站上搜索我的账号:运维实战课程,可以关注我,学习更多免费的运...
- 时隔三月,参加2020秋招散招,终拿字节跳动后端开发意向书.
-
3个月前头条正式批笔试4道编程题只AC了2道,然后被刷了做了200多道还是太菜了,本来对字节不抱太大希望,毕竟后台竞争太大,而且字节招客户端开发比较多。后来看到有散招免笔试,抱着试一试的心态投了,然而...
- Redisson:Java程序员手中的“魔法锁”
-
Redisson:Java程序员手中的“魔法锁”在这个万物互联的时代,分布式系统已经成为主流。然而,随着系统的扩展,共享资源的争夺成为了一个棘手的问题。就比如你想在淘宝“秒杀”一款商品,却发现抢的人太...
- 【线上故障复盘】RPC 线程池被打满,1024个线程居然不够用?
-
1.故障背景昨天晚上,我刚到家里打开公司群,就看见群里有人讨论:线上环境出现大量RPC请求报错,异常原因:被线程池拒绝。虽然异常量很大,但是异常服务非核心服务,属于系统旁路,服务于数据核对任务,即使...
- 小红书取消大小周,有人不高兴了!
-
小红书宣布五一节假日之后,取消大小周,恢复为正常的双休,乍一看工作时长变少,按道理来说大家应该都会很开心,毕竟上班时间缩短了,但是还是有一些小红书的朋友高兴不起来,心情很复杂。因为没有了大小周,以前...
- 延迟任务的多种实现方案(延迟机制)
-
场景订单超时自动取消:延迟任务典型的使用场景是订单超时自动取消。功能精确的时间控制:延时任务的时间控制要尽量准确。可靠性:延时任务的处理要是可靠的,确保所有任务最终都能被执行。这通常要求延时任务的方案...
- 百度java面试真题(java面试题下载)
-
1、SpingBoot也有定时任务?是什么注解?在SpringBoot中使用定时任务主要有两种不同的方式,一个就是使用Spring中的@Scheduled注解,另一个则是使用第三方框架Q...
- 回归基础:访问 Kubernetes Pod(concurrent.futures访问数据库)
-
Kubernetes是一头巨大的野兽。在它开始有用之前,您需要了解许多概念。在这里,学习几种访问集群外pod的方法。Kubernetes是一头巨大的野兽。在它开始有用之前,您需要了解许多不同的...
- Spring 缓存神器 @Cacheable:3 分钟学会优化高频数据访问
-
在互联网应用中,高频数据查询(如商品详情、用户信息)往往成为性能瓶颈。每次请求都触发数据库查询,不仅增加服务器压力,还会导致响应延迟。Spring框架提供的@Cacheable注解,就像给方法加了一...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Docker安装详细步骤及相关环境安装配置
- Linux下安装常用软件都有哪些?做了一个汇总列表,你看还缺啥?
- Nginx安装和使用指南详细讲解(nginx1.20安装)
- docker之安装部署Harbor(docker安装hacs)
- 成功安装 Magento2.4.3最新版教程「技术干货」
- 【Linux】——从0到1的学习,让你熟练掌握,带你玩转Linu
- cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务
- 时隔三月,参加2020秋招散招,终拿字节跳动后端开发意向书.
- Redisson:Java程序员手中的“魔法锁”
- 【线上故障复盘】RPC 线程池被打满,1024个线程居然不够用?
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)