基于kubernetes的分布式限流
mhr18 2024-11-27 11:59 17 浏览 0 评论
做为一个数据上报系统,随着接入量越来越大,由于 API 接口无法控制调用方的行为,因此当遇到瞬时请求量激增时,会导致接口占用过多服务器资源,使得其他请求响应速度降低或是超时,更有甚者可能导致服务器宕机。
一、概念
限流(Ratelimiting)指对应用服务的请求进行限制,例如某一接口的请求限制为 100 个每秒,对超过限制的请求则进行快速失败或丢弃。
1.1 使用场景
限流可以应对:
- 热点业务带来的突发请求;
- 调用方 bug 导致的突发请求;
- 恶意攻击请求。
1.2 维度
对于限流场景,一般需要考虑两个维度的信息:
时间
限流基于某段时间范围或者某个时间点,也就是我们常说的“时间窗口”,比如对每分钟、每秒钟的时间窗口做限定
资源
基于可用资源的限制,比如设定最大访问次数,或最高可用连接数。
??限流就是在某个时间窗口对资源访问做限制,比如设定每秒最多100个访问请求。
1.3 分布式限流
分布式限流相比于单机限流,只是把限流频次分配到各个节点中,比如限制某个服务访问100qps,如果有10个节点,那么每个节点理论上能够平均被访问10次,如果超过了则进行频率限制。
二、分布式限流常用方案
基于Guava的客户端限流
Guava是一个客户端组件,在其多线程模块下提供了以RateLimiter为首的几个限流支持类。它只能对“当前”服务进行限流,即它不属于分布式限流的解决方案。
网关层限流
服务网关,作为整个分布式链路中的第一道关卡,承接了所有用户来访请求。我们在网关层进行限流,就可以达到了整体限流的目的了。目前,主流的网关层有以软件为代表的Nginx,还有Spring Cloud中的Gateway和Zuul这类网关层组件,也有以硬件为代表的F5。
中间件限流
将限流信息存储在分布式环境中某个中间件里(比如Redis缓存),每个组件都可以从这里获取到当前时刻的流量统计,从而决定是拒绝服务还是放行流量。
限流组件
目前也有一些开源组件提供了限流的功能,比如Sentinel就是一个不错的选择。Sentinel是阿里出品的开源组件,并且包含在了Spring Cloud Alibaba组件库中。Hystrix也具有限流的功能。
Guava的Ratelimiter设计实现相当不错,可惜只能支持单机,网关层限流如果是单机则不太满足高可用,并且分布式网关的话还是需要依赖中间件限流,而redis之类的网络通信需要占用一小部分的网络消耗。阿里的Sentinel也是同理,底层使用的是redis或者zookeeper,每次访问都需要调用一次redis或者zk的接口。那么在云原生场景下,我们有没有什么更好的办法呢?
对于极致追求高性能的服务不需要考虑熔断、降级来说,是需要尽量减少网络之间的IO,那么是否可以通过一个总限频然后分配到具体的单机里面去,在单机中实现平均的限流,比如限制某个ip的qps为100,服务总共有10个节点,那么平均到每个服务里就是10qps,此时就可以通过guava的ratelimiter来实现了,甚至说如果服务的节点动态调整,单个服务的qps也能动态调整。
三、基于kubernetes的分布式限流
在Spring Boot应用中,定义一个filter,获取请求参数里的key(ip、userId等),然后根据key来获取rateLimiter,其中,rateLimiter的创建由数据库定义的限频数和副本数来判断,最后,再通过rateLimiter.tryAcquire来判断是否可以通过。
3.1 kubernetes中的副本数
在实际的服务中,数据上报服务一般无法确定客户端的上报时间、上报量,特别是对于这种要求高性能,服务一般都会用到HPA来实现动态扩缩容,所以,需要去间隔一段时间去获取服务的副本数。
func CountDeploymentSize(namespace string, deploymentName string) *int32 {
deployment, err := client.AppsV1().Deployments(namespace).Get(context.TODO(), deploymentName, metav1.GetOptions{})
if err != nil {
return nil
}
return deployment.Spec.Replicas
}
用法:GET host/namespaces/test/deployments/k8s-rest-api直接即可。
3.2 rateLimiter的创建
在RateLimiterService中定义一个LoadingCache<String, RateLimiter>,其中,key可以为ip、userId等,并且,在多线程的情况下,使用refreshAfterWrite只阻塞加载数据的线程,其他线程则返回旧数据,极致发挥缓存的作用。
private final LoadingCache<String, RateLimiter> loadingCache = Caffeine.newBuilder()
.maximumSize(10_000)
.refreshAfterWrite(20, TimeUnit.MINUTES)
.build(this::createRateLimit);
//定义一个默认最小的QPS
private static final Integer minQpsLimit = 3000;
之后是创建rateLimiter,获取总限频数totalLimit和副本数replicas,之后是自己所需的逻辑判断,可以根据totalLimit和replicas的情况来进行qps的限定。
public RateLimiter createRateLimit(String key) {
log.info("createRateLimit,key:{}", key);
int totalLimit = 获取总限频数,可以在数据库中定义
Integer replicas = kubernetesService.getDeploymentReplicas();
RateLimiter rateLimiter;
if (totalLimit > 0 && replicas == null) {
rateLimiter = RateLimiter.create(totalLimit);
} else if (totalLimit > 0) {
int nodeQpsLimit = totalLimit / replicas;
rateLimiter = RateLimiter.create(nodeQpsLimit > minQpsLimit ? nodeQpsLimit : minQpsLimit);
} else {
rateLimiter = RateLimiter.create(minQpsLimit);
}
log.info("create rateLimiter success,key:{},rateLimiter:{}", key, rateLimiter);
return rateLimiter;
}
3.3 rateLimiter的获取
根据key获取RateLimiter,如果有特殊需求的话,需要判断key不存在的尝尽
public RateLimiter getRateLimiter(String key) {
return loadingCache.get(key);
}
3.4 filter里的判断
最后一步,就是使用rateLimiter来进行限流,如果rateLimiter.tryAcquire()为true,则进行filterChain.doFilter(request, response),如果为false,则返回HttpStatus.TOO_MANY_REQUESTS
public class RateLimiterFilter implements Filter {
@Resource
private RateLimiterService rateLimiterService;
@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain filterChain) throws IOException, ServletException {
HttpServletRequest httpServletRequest = (HttpServletRequest) request;
HttpServletResponse httpServletResponse = (HttpServletResponse) response;
String key = httpServletRequest.getHeader("key");
RateLimiter rateLimiter = rateLimiterService.getRateLimiter(key);
if (rateLimiter != null) {
if (rateLimiter.tryAcquire()) {
filterChain.doFilter(request, response);
} else {
httpServletResponse.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());
}
} else {
filterChain.doFilter(request, response);
}
}
}
四、性能压测
为了方便对比性能之间的差距,我们在本地单机做了下列测试,其中,总限频都设置为3万。
无限流
使用redis限流
其中,ping redis大概6-7ms左右,对应的,每次请求需要访问redis,时延都有大概6-7ms,性能下降明显
自研限流
性能几乎追平无限流的场景,guava的rateLimiter确实表现卓越
五、其他问题
5.1 对于保证qps限频准确的时候,应该怎么解决呢?
在k8s中,服务是动态扩缩容的,相应的,每个节点应该都要有所变化,如果对外宣称限频100qps,而且后续业务方真的要求百分百准确,只能把LoadingCache<String, RateLimiter>的过期时间调小一点,让它能够近实时的更新单节点的qps。这里还需要考虑一下k8s的压力,因为每次都要获取副本数,这里也是需要做缓存的
5.2 服务从1个节点动态扩为4个节点,这个时候新节点识别为4,但其实有些并没有启动完,会不会造成某个节点承受了太大的压力
理论上是存在这个可能的,这个时候需要考虑一下初始的副本数的,扩缩容不能一蹴而就,一下子从1变为4变为几十个这种。一般的话,生产环境肯定是不能只有一个节点,并且要考虑扩缩容的话,至于要有多个副本预备的
5.3 如果有多个副本,怎么保证请求是均匀的
这个是依赖于k8s的service负载均衡策略的,这个我们之前做过实验,流量确实是能够均匀的落到节点上的。还有就是,我们整个限流都是基于k8s的,如果k8s出现问题,那就是整个集群所有服务都有可能出现问题了。
作者:ZepheryWen
链接:https://www.cnblogs.com/w1570631036/p/16123227.html
相关推荐
- B站收藏视频失效?mybili 收藏夹备份神器完整部署指南
-
本内容来源于@什么值得买APP,观点仅代表作者本人|作者:羊刀仙很多B站用户都有过类似经历:自己精心收藏的视频突然“消失”,点开一看不是“已被删除”,就是“因UP主设置不可见”。而B站并不会主动通知...
- 中间件推荐初始化配置
-
Redis推荐初始化配置bind0.0.0.0protected-modeyesport6379tcp-backlog511timeout300tcp-keepalive300...
- Redis中缓存穿透问题与解决方法
-
缓存穿透问题概述在Redis作为缓存使用时,缓存穿透是常见问题。正常查询流程是先从Redis缓存获取数据,若有则直接使用;若没有则去数据库查询,查到后存入缓存。但当请求的数据在缓存和数据库中都...
- 后端开发必看!Redis 哨兵机制如何保障系统高可用?
-
你是否曾在项目中遇到过Redis主服务器突然宕机,导致整个业务系统出现数据读取异常、响应延迟甚至服务中断的情况?面对这样的突发状况,作为互联网大厂的后端开发人员,如何快速恢复服务、保障系统的高可用...
- Redis合集-大Key处理建议
-
以下是Redis大Key问题的全流程解决方案,涵盖检测、处理、优化及预防策略,结合代码示例和最佳实践:一、大Key的定义与风险1.大Key判定标准数据类型大Key阈值风险场景S...
- 深入解析跳跃表:Redis里的"老六"数据结构,专治各种不服
-
大家好,我是你们的码农段子手,今天要给大家讲一个Redis世界里最会"跳科目三"的数据结构——跳跃表(SkipList)。这货表面上是个青铜,实际上是个王者,连红黑树见了都要喊声大哥。...
- Redis 中 AOF 持久化技术原理全解析,看完你就懂了!
-
你在使用Redis的过程中,有没有担心过数据丢失的问题?尤其是在服务器突然宕机、意外断电等情况发生时,那些还没来得及持久化的数据,是不是让你夜不能寐?别担心,Redis的AOF持久化技术就是...
- Redis合集-必备的几款运维工具
-
Redis在应用Redis时,经常会面临的运维工作,包括Redis的运行状态监控,数据迁移,主从集群、切片集群的部署和运维。接下来,从这三个方面,介绍一些工具。先来学习下监控Redis实时...
- 别再纠结线程池大小 + 线程数量了,没有固定公式的!
-
我们在百度上能很轻易地搜索到以下线程池设置大小的理论:在一台服务器上我们按照以下设置CPU密集型的程序-核心数+1I/O密集型的程序-核心数*2你不会真的按照这个理论来设置线程池的...
- 网络编程—IO多路复用详解
-
假如你想了解IO多路复用,那本文或许可以帮助你本文的最大目的就是想要把select、epoll在执行过程中干了什么叙述出来,所以具体的代码不会涉及,毕竟不同语言的接口有所区别。基础知识IO多路复用涉及...
- 5分钟学会C/C++多线程编程进程和线程
-
前言对线程有基本的理解简单的C++面向过程编程能力创造单个简单的线程。创造单个带参数的线程。如何等待线程结束。创造多个线程,并使用互斥量来防止资源抢占。会使用之后,直接跳到“汇总”,复制模板来用就行...
- 尽情阅读,技术进阶,详解mmap的原理
-
1.一句话概括mmapmmap的作用,在应用这一层,是让你把文件的某一段,当作内存一样来访问。将文件映射到物理内存,将进程虚拟空间映射到那块内存。这样,进程不仅能像访问内存一样读写文件,多个进程...
- C++11多线程知识点总结
-
一、多线程的基本概念1、进程与线程的区别和联系进程:进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程;线程:是运行中的实际的任务执行者。可以说,进程中包含了多...
- 微服务高可用的2个关键技巧,你一定用得上
-
概述上一篇文章讲了一个朋友公司使用SpringCloud架构遇到问题的一个真实案例,虽然不是什么大的技术问题,但如果对一些东西理解的不深刻,还真会犯一些错误。这篇文章我们来聊聊在微服务架构中,到底如...
- Java线程间如何共享与传递数据
-
1、背景在日常SpringBoot应用或者Java应用开发中,使用多线程编程有很多好处,比如可以同时处理多个任务,提高程序的并发性;可以充分利用计算机的多核处理器,使得程序能够更好地利用计算机的资源,...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)