百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

Redis作为LRU Cache的实现(redis中lru)

mhr18 2024-11-08 12:16 22 浏览 0 评论

公有云Redis服务:https://www.aliyun.com/product/kvstore?spm=5176.8142029.388261.37.59zzzj

背景

Redis作为目前最流行的KV内存数据库,也实现了自己的LRULatest Recently Used)算法,在内存写满的时候,依据其进行数据的淘汰。LRU算法本身的含义,这里不做赘述,严格的LRU算法,会优先选择淘汰最久没有访问的数据,这种实现也比较简单,通常是用一个双向链表+一个哈希表来实现O(1)的淘汰和更新操作。但是,Redis为了节省内存使用,和通常的LRU算法实现不太一样,Redis使用了采样的方法来模拟一个近似LRU算法。

下面先给一个图来直观的感受一下Redis的近似LRU算法和严格LRU算法的差异,

图中深灰色和浅灰色的点表示的key数量正好可以写满内存,绿色的点表示刚写入的key,浅灰色的点表示被淘汰的key,深灰色的点表示剩余的没有被淘汰的key。

在严格LRU算法下,图的左上部分,最先写入的一半的key,被顺序淘汰掉了,但是在Redis的近似LRU算法下,图的左下部分,可能出现很早之前写入的key,并没有被淘汰掉,写入时间更晚的key反而被淘汰了,但是也没有出现比较极端的刚刚写入不久的key就被淘汰的情况。

根据Redis作者的说法,如果访问Redis的模式呈现幂律分布,即通常说的二八分布,Redis 2.8的近似LRU算法和严格LRU算法差异不大,下面我们就来看看这个近似LRU算法是怎么实现的。

图的右半部分是Redis 3.0对于近似LRU算法的优化,后面我们会写文章再介绍,同时我们的Redis云服务内核后续也会merge该优化。

Redis LRU算法实现

Redis 2.8.19中使用了一个全局的LRU时钟,server.lruclock,定义如下,

#define REDIS_LRU_BITS 24unsigned lruclock:REDIS_LRU_BITS; /* Clock for LRU eviction */

默认的LRU时钟的分辨率是1秒,可以通过改变REDIS_LRU_CLOCK_RESOLUTION宏的值来改变,Redis会在serverCron()中调用updateLRUClock定期的更新LRU时钟,更新的频率和hz参数有关,默认为100ms一次,如下,

#define REDIS_LRU_CLOCK_MAX ((1<<REDIS_LRU_BITS)-1) /* Max value of obj->lru */#define REDIS_LRU_CLOCK_RESOLUTION 1 /* LRU clock resolution in seconds */void updateLRUClock(void) {

server.lruclock = (server.unixtime/REDIS_LRU_CLOCK_RESOLUTION) &

REDIS_LRU_CLOCK_MAX;

}

server.unixtime是系统当前的unix时间戳,当lruclock的值超出REDIS_LRU_CLOCK_MAX时,会从头开始计算,所以在计算一个key的最长没有访问时间时,可能key本身保存的lru访问时间会比当前的lrulock还要大,这个时候需要计算额外时间,如下,

/* Given an object returns the min number of seconds the object was never

* requested, using an approximated LRU algorithm. */unsigned long estimateObjectIdleTime(robj *o) { if (server.lruclock >= o->lru) { return (server.lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION;

} else { return ((REDIS_LRU_CLOCK_MAX - o->lru) + server.lruclock) *

REDIS_LRU_CLOCK_RESOLUTION;

}

}

这样计算会不会有问题呢?还是有的,即某个key就是很久很久没有访问,lruclock从头开始后,又超过了该key保存的lru访问时间,这个时间是多久呢,在现有的lru时钟1秒分辨率下,24bit可以表示的最长时间大约是194天,所以一个key如果连续194天没有访问了,Redis计算该key的idle时间是有误的,但是这种情况应该非常罕见。

Redis支持的淘汰策略比较多,这里只涉及和LRU相关的,

  • volatile-lru 设置了过期时间的key参与近似的lru淘汰策略

  • allkeys-lru 所有的key均参与近似的lru淘汰策略

当进行LRU淘汰时,Redis按如下方式进行的,

...... /* volatile-lru and allkeys-lru policy */

else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||

server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)

{

for (k = 0; k < server.maxmemory_samples; k++) {

sds thiskey;

long thisval;

robj *o;

de = dictGetRandomKey(dict); thiskey = dictGetKey(de); /* When policy is volatile-lru we need an additional lookup

* to locate the real key, as dict is set to db->expires. */

if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)

de = dictFind(db->dict, thiskey);

o = dictGetVal(de); thisval = estimateObjectIdleTime(o);

/* Higher idle time is better candidate for deletion */

if (bestkey == NULL || thisval > bestval) { bestkey = thiskey;

bestval = thisval;

}

}

}

......

Redis会基于server.maxmemory_samples配置选取固定数目的key,然后比较它们的lru访问时间,然后淘汰最近最久没有访问的key,maxmemory_samples的值越大,Redis的近似LRU算法就越接近于严格LRU算法,但是相应消耗也变高,对性能有一定影响,样本值默认为5。

每个key的lru访问时间更新比较简单,但是有一点值得注意,为了避免fork子进程后额外的内存消耗,当进行bgsaveaof rewrite时,lru访问时间是不更新的。

robj *lookupKey(redisDb *db, robj *key) {

dictEntry *de = dictFind(db->dict,key->ptr); if (de) {

robj *val = dictGetVal(de); /* Update the access time for the ageing algorithm.

* Don't do it if we have a saving child, as this will trigger

* a copy on write madness. */

if (server.rdb_child_pid == -1 && server.aof_child_pid == -1) val->lru = server.lruclock; return val;

} else { return NULL;

}

}

总结

如果采用双向链表+hash表的方式来实现严格的LRU算法,初步估计每个key要增加额外32个字节左右的内存消耗,当key数量比较多时,还是会带来相当可观的内存消耗,Redis使用近似的LRU算法,每个key只需额外24bit的内存空间,节省还是相当的大的。后面我们会介绍redis 3.x中对近似LRU算法的优化,使用尽量少的内存,使Redis的LRU算法更接近于严格LRU,敬请期待。

相关推荐

redis 7.4.3更新!安全修复+性能优化全解析

一、Redis是什么?为什么选择它?Redis(RemoteDictionaryServer)是一款开源的高性能内存键值数据库,支持持久化、多数据结构(如字符串、哈希、列表等),广泛应用于缓存、消...

C# 读写Redis数据库的简单例子

CSRedis是一个基于C#的Redis客户端库,它提供了与Redis服务器进行交互的功能。它是一个轻量级、高性能的库,易于使用和集成到C#应用程序中。您可以使用NuGet包管理器或使用以下命令行命令...

十年之重修Redis原理

弱小和无知并不是生存的障碍,傲慢才是。--------面试者总结Redis可能都用过,但是从来没有理解过,就像一个熟悉的陌生人,本文主要讲述了Redis基本类型的使用、数据结构、持久化、单线程模型...

高频L2行情数据Redis存储架构设计(含C++实现代码)

一、Redis核心设计原则内存高效:优化数据结构,减少内存占用低延迟访问:单次操作≤0.1ms响应时间数据完整性:完整存储所有L2字段实时订阅:支持多客户端实时数据推送持久化策略:RDB+AOF保障数...

Magic-Boot开源引擎:零代码玩转企业级开发,效率暴涨!

一、项目介绍基于magic-api搭建的快速开发平台,前端采用Vue3+naive-ui最新版本搭建,依赖较少,运行速度快。对常用组件进行封装。利用Vue3的@vue/compiler-sfc单文...

项目不行简历拉胯?3招教你从面试陪跑逆袭大厂offer!

项目不行简历拉胯?3招教你从面试陪跑逆袭大厂offer!老铁们!是不是每次面试完都感觉自己像被大厂面试官婉拒的渣男?明明刷了三个月题库,背熟八股文,结果一被问项目就支支吾吾,简历写得像大学生课程设计?...

谷歌云平台:开发者部署超120个开源包

从国外相关报道了解,Google与Bitnami合作为Google云平台增加了一个新的功能,为了方便开发人员快捷部署程序,提供了120余款开源应用程序云平台的支持。这些应用程序其中包括了WordPre...

知名互联网公司和程序员都看好的数据库是什么?

2017年数据库领域的最大趋势是什么?什么是最热的数据处理技术?学什么数据库最有前途?程序员们普遍不喜欢的数据库是什么?本文都会一一揭秘。大数据时代,数据库的选择备受关注,此前本号就曾揭秘国内知名互联...

腾讯云发布云存储MongoDB服务

近日,著名安全专家兼Shodan搜索引擎的创建者JohnMatherly发现,目前至少有35000个受影响的MongoDB数据库暴露在互联网上,它们所包含的数据暴露在网络攻击风险之中。据估计,将近6...

已跪,Java全能笔记爆火,分布式/开源框架/微服务/性能调优全有

前言程序员,立之根本还是技术,一个程序员的好坏,虽然不能完全用技术强弱来判断,但是技术水平一定是基础,技术差的程序员只能CRUD,技术不深的程序员也成不了架构师。程序员对于技术的掌握,除了从了解-熟悉...

面试官:举个你解决冲突的例子?别怂!用这个套路……

面试官:举个你解决冲突的例子?别怂!用这个套路……最近收到粉丝私信,说被问到:团队技术方案有分歧怎么办?当场大脑宕机……兄弟!这不是送命题,是展示你情商+技术判断力的王炸题!今天教你们3招,用真实案例...

面试碰到MongoDB?莫慌,跟面试官这样吹MongoDB 复制集

推荐阅读:吊打MySQL:21性能优化实践+学习导图+55面试+笔记+20高频知识点阿里一线架构师分享的技术图谱,进阶加薪全靠它十面字节跳动,依旧空手而归,我该放弃吗?文末会分享一些MongoDB的学...

SpringBoot集成扩展-访问NoSQL数据库之Redis和MongoDB!

与关系型数据库一样,SpringBoot也提供了对NoSQL数据库的集成扩展,如对Redis和MongoDB等数据库的操作。通过默认配置即可使用RedisTemplate和MongoTemplate...

Java程序员找工作总卡项目关?

Java程序员找工作总卡项目关?3招教你用真实经历写出HR抢着要的简历!各位Java老哥,最近刷招聘软件是不是手都划酸了?简历投出去石沉大海,面试邀请却总在飞别人的简历?上周有个兄弟,13年经验投了5...

Java多租户SaaS系统实现方案

嗯,用户问的是Java通过租户id实现的SaaS方案。首先,我需要理解用户的需求。SaaS,也就是软件即服务,通常是指多租户的架构,每个租户的数据需要隔离。用户可能想知道如何在Java中利用租户ID来...

取消回复欢迎 发表评论: