百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

给你1亿的Redis key,如何高效统计?

mhr18 2025-07-21 16:20 4 浏览 0 评论

前言

有些小伙伴在工作中,可能遇到过这样的场景:老板突然要求统计Redis中所有key的数量,你随手执行了KEYS *命令,下一秒监控告警疯狂闪烁——整个Redis集群彻底卡死,线上服务大面积瘫痪。

今天这篇文章就跟大家一起聊聊如果给你1亿个Redis key,如何高效统计这个话题,希望对你会有所帮助。

1 为什么不建议使用KEYS命令?

Redis的单线程模型是其高性能的核心,但也是最大的软肋。

当Redis执行 KEYS * 命令时,内部的流程如下:

Redis的单线程模型是其高性能的核心,但同时也带来一个关键限制:所有命令都是串行执行的。

当我们执行 KEYS * 命令时:

Redis必须遍历整个key空间(时间复杂度O(N))

在遍历完成前,无法处理其他任何命令

对于1亿个key,即使每个key查找只需0.1微秒,总耗时也高达10秒!

致命三连击

  1. 时间复杂度:1亿key需要10秒+(实测单核CPU 0.1μs/key)
  2. 内存风暴:返回结果太多可能撑爆客户端内存
  3. 集群失效:在Cluster模式中只能查当前节点的数据。

如果Redis一次性返回的数据太多,可能会有OOM问题:

127.0.0.1:6379> KEYS *
(卡死10秒...)
(error) OOM command not allowed when used memory > 'maxmemory'

超过了最大内存。

那么,Redis中有1亿key,我们要如何统计数据呢?

2 SCAN命令

SCAN命令通过游标分批遍历,每次只返回少量key,避免阻塞。

Java版基础SCAN的代码如下:

public long safeCount(Jedis jedis) {
    long total = 0;
    String cursor = "0";
    ScanParams params = new ScanParams().count(500); // 每批500个
    
    do {
        ScanResult<String> rs = jedis.scan(cursor, params);
        cursor = rs.getCursor();
        total += rs.getResult().size();
    } while (!"0".equals(cursor)); // 游标0表示结束
    
    return total;
}

使用游标查询Redis中的数据,一次扫描500条数据。

但问题来了:1亿key需要多久?

  • 每次SCAN耗时≈3ms
  • 每次返回500key
  • 总次数=1亿/500=20万次
  • 总耗时≈20万×3ms=600秒=10分钟!

3 多线程并发SCAN方案

现代服务器都是多核CPU,单线程扫描是资源浪费。

看多线程优化方案如下:

多线程并发SCAN代码如下:

public long parallelCount(JedisPool pool, int threads) throws Exception {
    ExecutorService executor = Executors.newFixedThreadPool(threads);
    AtomicLong total = new AtomicLong(0);
    
    // 生成初始游标(实际需要更智能的分段)
    List<String> cursors = new ArrayList<>();
    for (int i = 0; i < threads; i++) {
        cursors.add(String.valueOf(i));
    }

    CountDownLatch latch = new CountDownLatch(threads);
    
    for (String cursor : cursors) {
        executor.execute(() -> {
            try (Jedis jedis = pool.getResource()) {
                String cur = cursor;
                do {
                    ScanResult<String> rs = jedis.scan(cur, new ScanParams().count(500));
                    cur = rs.getCursor();
                    total.addAndGet(rs.getResult().size());
                } while (!"0".equals(cur));
                latch.countDown();
            }
        });
    }
    
    latch.await();
    executor.shutdown();
    return total.get();
}

使用线程池、AtomicLong和CountDownLatch配合使用,实现了多线程扫描数据,最终将结果合并。

性能对比(32核CPU/1亿key):

方案

线程数

耗时

资源占用

单线程SCAN

1

580s

CPU 5%

多线程SCAN

32

18s

CPU 800%

4 分布式环境的分治策略

如果你的系统重使用了Redis Cluster集群模式,该模式会将数据分散在16384个槽(slot)中,统计就需要节点协同。

流程图如下:

每一个Redis Cluster集群中的master服务节点,都负责统计一定范围的槽(slot)中的数据,最后将数据聚合起来返回。

集群版并行统计代码如下:

public long clusterCount(JedisCluster cluster) {
    Map<String, JedisPool> nodes = cluster.getClusterNodes();
    AtomicLong total = new AtomicLong(0);
    
    nodes.values().parallelStream().forEach(pool -> {
        try (Jedis jedis = pool.getResource()) {
            // 跳过从节点
            if (jedis.info("replication").contains("role:slave")) return; 
            
            String cursor = "0";
            do {
                ScanResult<String> rs = jedis.scan(cursor, new ScanParams().count(500));
                total.addAndGet(rs.getResult().size());
                cursor = rs.getCursor();
            } while (!"0".equals(cursor));
        }
    });
    
    return total.get();
}

这里使用了parallelStream,会并发统计Redis不同的master节点中的数据。

5 毫秒统计方案

方案1:使用内置计数器

如果只想统计一个数量,可以使用Redis内置计数器,瞬时但非精确。

127.0.0.1:6379> info keyspace
# Keyspace
db0:keys=100000000,expires=20000,avg_ttl=3600

优点:毫秒级返回。

缺点:包含已过期未删除的key,法按模式过滤数据。

方案2:实时增量统计

实时增量统计方案精准但复杂。

基于键空间通知的实时计数器,具体代码如下:

@Configuration
publicclass KeyCounterConfig {
    
    @Bean
    public RedisMessageListenerContainer container(RedisConnectionFactory factory) {
        RedisMessageListenerContainer container = new RedisMessageListenerContainer();
        container.setConnectionFactory(factory);
        
        container.addMessageListener((message, pattern) -> {
            String event = new String(message.getBody());
            if(event.startsWith("__keyevent@0__:set")) {
                redisTemplate.opsForValue().increment("total_keys", 1);
            } elseif(event.startsWith("__keyevent@0__:del")) {
                redisTemplate.opsForValue().decrement("total_keys", 1);
            }
        }, new PatternTopic("__keyevent@*"));
        
        return container;
    }
}

使用监听器统计数量。

成本分析

  • 内存开销:额外存储计数器
  • CPU开销:增加5%-10%处理通知
  • 网络开销:集群模式下需跨节点同步

6 如何选择方案?

本文中列举出了多个统计Redis中key的方案,那么我们在实际工作中如何选择呢?

下面用一张图给大家列举了选择路线:

各方案的时间和空间复杂度如下:

方案

时间复杂度

空间复杂度

精度

KEYS命令

O(n)

O(n)

精确

SCAN遍历

O(n)

O(1)

精确

内置计数器

O(1)

O(1)

不精确

增量统计

O(1)

O(1)

精确

硬件法则:

  • CPU密集型:多线程数=CPU核心数×1.5
  • IO密集型:线程数=CPU核心数×3
  • 内存限制:控制批次大小(count参数)

常见的业务场景:

  • 电商实时大屏:增量计数器+RedisTimeSeries
  • 离线数据分析:SCAN导出到Spark
  • 安全审计:多节点并行SCAN

终极箴言
精确统计用分治
实时查询用增量
趋势分析用采样
暴力遍历是自杀

真正的高手不是能解决难题的人,而是能预见并规避难题的人

在海量数据时代,选择比努力更重要——理解数据本质,才能驾驭数据洪流。

相关推荐

如何通过 Redis 日志排查连接超时问题

Redis是一种高性能的内存数据存储服务,但在高并发或误配置情况下,可能会出现连接超时问题。借助Redis日志,可以快速定位并解决连接超时的根本原因。以下是具体的排查和解决步骤:1.什么是R...

给你1亿的Redis key,如何高效统计?

前言有些小伙伴在工作中,可能遇到过这样的场景:老板突然要求统计Redis中所有key的数量,你随手执行了KEYS*命令,下一秒监控告警疯狂闪烁——整个Redis集群彻底卡死,线上服务大面积瘫痪。今天...

Redis分布式锁的安全性分析与实践指南

一、Redis分布式锁的核心原理Redis分布式锁通过SETNX(SetifNotExists)和EXPIRE(Expire)指令实现原子性操作,结合UUID生成唯一标识符,确保锁的互斥性和安全...

高可用Redis分布式锁:秒杀系统中的锁战

引言在分布式系统中,“程序猿的终极武器是并发控制”。当多个服务实例同时访问共享资源时,如何避免数据不一致和重复操作?答案是分布式锁。Redis凭借其高性能和原子性操作,成为实现分布式锁的首选方案。...

Redis分布式锁(redis分布式锁解决超卖)

场景描述简单模拟一个高并发库存扣减场景,商品库存加载到Redis缓存,如:127.0.0.1:6379>setproduct:stock:101200无锁状态操作从缓存中获取对应商品的库存...

Redis 分布式锁和 ZooKeeper分布式锁

Redis分布式锁和ZooKeeper(简称zk)分布式锁都是用来解决在分布式系统中多个节点之间竞争资源的问题。它们各自有不同的特点和适用场景。Redis分布式锁Redis实现分布式锁主要是...

Redis vs ZooKeeper锁:高并发下的生死对决,谁才是最终赢家?

在分布式系统中,锁是控制资源访问的重要机制。Redis和ZooKeeper作为两种主流的分布式锁实现方案,各有优劣。本文将从原理、性能、代码实现三个维度进行硬核对比,助你做出最佳技术选型。一、原理对比...

说说Redis的大key(redis key大小限制)

一句话总结Redis大key指存储超大值(如字符串过大、集合元素过多)的键。主要成因包括:1.设计不合理,未拆分数据结构;2.业务需求(如缓存整页数据);3.数据持续积累未清理;4.使用不当的集合类型...

PHP Laravel框架底层机制(php框架的底层原理)

当然可以,Laravel是最受欢迎的PHP框架之一,以优雅的语法和丰富的生态而闻名。尽管开发体验非常“高端”,它的底层其实是由一系列结构清晰、职责分明的组件构成的。下面我从整体架构、核心流程、...

PHP性能全面优化-值得收藏(php优化网站性能)

PHP项目卡顿频发,老技巧失灵?隐藏漏洞竟在代码循环里。上周公司服务器突然开始卡顿,测试发现用户请求响应时间翻倍。我们先按以前学的方法做了基准测试,用AB工具压测时发现2000并发就有5%错误,换成S...

PHP+UniApp:低成本打造外卖系统横扫App+小程序+H5全平台

在餐饮行业数字化转型中,外卖系统开发常面临两大痛点:高昂的开发成本(需独立开发App、小程序、H5)和多端维护的复杂性。PHP+UniApp的组合通过技术复用与跨平台能力,为中小商家和开发者提供了“降...

从需求到上线:PHP+Uniapp校园圈子系统源码的架构设计与性能优化

一、需求分析与架构设计1.核心功能需求用户体系:支持手机号/微信登录、多角色权限(学生、教师、管理员)。圈子管理:支持创建/加入兴趣圈子(如学术、电竞)、标签分类、动态发布与审核。实时互动:点赞、评...

PHP 8.0性能翻3倍?四年亲测:这些项目升了哭晕!

2020年那个感恩节,当PHP8.0带着“性能翻倍”的豪言横空出世时,无数程序员连夜备份代码准备升级。四年过去了,那些宣称“性能提升3倍”的项目,真的跑出火箭速度了吗?还记得当时铺天盖地的宣传吗?“...

我把 Mac mini 托管到机房了:一套打败云服务器的终极方案

本内容来源于@什么值得买APP,观点仅代表作者本人|作者:薯仔不爱吃薯仔我把我积灰的Macmini托管到机房了,有图有真相。虽然画质又渣又昏暗,但是!这就是实锤。作为开发者,谁不想拥有个自己的服...

从phpstudy到Docker:我用一个下午让开发效率翻倍的实战指南

一、为什么放弃phpstudy?上周三下午,我花了3小时将本地开发环境从phpstudy迁移到Docker,没想到第二天团队反馈:环境部署时间从2小时压缩到5分钟,跨设备协作bug减少70%。作为一个...

取消回复欢迎 发表评论: