高并发面试题:秒杀Redis分段锁,如何设计?
mhr18 2024-11-08 12:14 39 浏览 0 评论
秒杀,是一个非常常见的高并发面试题,很多面试官也非常熟悉,上来就让面试者设计一个秒杀系统。
一线互联网企业如得物、阿里、滴滴、极兔、有赞、shein 希音、百度、网易的面试资格,遇到很多很重要的面试题:
分布式锁,如何实现高并发?
如何才能回答得很漂亮,才能 让面试官刮目相看、口水直流。
问题场景:热点库存扣减问题
秒杀场景,有一个难度的问题:热点库存扣减问题。
- 既要保证不发生超卖
- 又要保证高并发
如何解决这个高难度的问题呢? 答案就是使用redis 分段锁。
首先说说什么是分布式锁,普通分布式锁的不足
比如说在一个分布式系统中,存在客户端多个用户,同时通过多个业务微服务,发起一个数据修改。
如果没有分布式锁机制保证,在那多台机器上的多个服务可能进行并发修改操作,导致数据修改的不一致,出现脏读脏写,这就会造成问题。
而分布式锁机制就是为了解决类似这类问题,保证多个服务之间互斥的访问共享资源,如果一个服务抢占了分布式锁,其他服务没获取到锁,就不进行后续操作。
上图中,客户端1的服务抢占了分布式锁,可以去扣减库存。
其他服务没获取到分布式锁,就不进行后续操作。
什么是分布式锁?
- 当在分布式模型下,数据只有一份(或有限制),此时需要利用锁的技术控制某一时刻修改数据的进程数。
- 用一个状态值表示锁,对锁的占用和释放通过状态值来标识。
分布式锁的条件:
- 互斥性。在任意时刻,只有一个客户端能持有锁。
- 不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
- 具有容错性。只要大部分的 Redis 节点正常运行,客户端就可以加锁和解锁。
- 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。
普通的分布式锁的如何实现?
粉丝福利, 免费领取C/C++ 开发学习资料包、技术视频/项目代码,1000道大厂面试题,内容包括(C++基础,网络编程,数据库,中间件,后端开发,音视频开发,Qt开发,游戏开发,Linux内核等进阶学习资料和最佳学习路线)↓↓↓↓有需要的朋友可以进企鹅裙927239107领取哦~↓↓
分布式锁的实现由很多种,文件锁、数据库、redis等等,比较多;分布式锁常见的多种实现方式:
- 数据库悲观锁、
- 数据库乐观锁;
- 基于Redis的分布式锁;
- 基于ZooKeeper的分布式锁。
在实践中,还是redis做分布式锁性能会高一些
普通分布式锁的性能问题
分布式锁一旦加了之后,对同一个商品的下单请求,会导致所有下单操作,都必须对同一个商品key加分布式锁。
假设某个场景,一个商品1分钟6000订单,每秒的 600个下单操作,
假设加锁之后,释放锁之前,查库存 -> 创建订单 -> 扣减库存,每个IO操作100ms,大概300毫秒。
具体如下图:
可以再进行一下优化,将 创建订单 + 扣减库存 并发执行,将两个100ms 减少为一个100ms,这既是空间换时间的思想,大概200毫秒。
将 创建订单 + 扣减库存 批量执行,减少一次IO,也是大概200毫秒。也就是单个商品而言,只有 5 QPS.
假设一个商品sku的数量是10000,10秒内秒杀完,也就是单个商品而言,需要 单商品 100 QPS,如何应对一个商品的 100qps秒杀。
甚至,如果单商品需要 1000qps秒杀呢?
答案是,使用 分段加锁。
优化之后:使用Redis分段锁提升秒杀的并发性能
回到前面的场景:
假设一个商品1分钟6000订单,每秒的 600个下单操作,
假设加锁之后,释放锁之前,查库存 -> 创建订单 -> 扣减库存,经过优化,每个IO操作100ms,大概200毫秒,一秒钟5个订单。
如何提高性能呢? 空间换时间
为了达到每秒600个订单,可以将锁分成 600 /5 =120 个段,反过来, 每个段1秒可以操作5次, 120个段,合起来,及时每秒操作600次。
进行抢夺锁的,如果申请到一个具体的段呢?
- 随机路由法
- hash取模法
如果是用随机路由算法,可以将请求随机到一个分段, 如果不行,就轮询下一个分段,具体的流程,大致如下:
这个是一个理论的时间预估,没有扣除 尝试下一个分段的 时间, 另外,实际上的性能, 会比理论上差,从咱们实操案例的测试结果,也可以证明这点。
随机路由法的问题:
不同分端之间,可能库存消耗不均,导致部分用户无法扣减库存,反复进行重试,拖慢系统性能。
如何进一步优化: hash取模法。
第二次优化之后:使用hash取模法,减少库存消耗不均和无效重试
由于秒杀场景的分布式锁,实际上是为了防止超卖, 和库存是强相关的。
所以,可以结合库存,把秒杀的分布式锁进行改进。
第一步: 把redis 的分段方式进行演进,额外增加一个总库存分段锁,用于分配存储剩余的总库存。采用多批次少量分配的思路,通过定时任务,从总库存向分段库存中迁移库存。
第二步:使用hash取模法,把用户路由到某一个分段,如果分段里边的库存耗光了,就去访问剩余的总库存。
库存动态迁移
为了防止分段多库存耗光,大家都去抢占总库存锁。
采用多批次少量分配的思路,通过定时任务,从总库存向分段库存中迁移库存。
至此, hash取模法的分段锁设计方案,已经完美实现。
相关推荐
- Redis教程——数据类型(字符串、列表)
-
上篇文章我们学习了Redis教程——Redis入门,这篇文章我们学习Redis教程——数据类型(字符串、列表)。Redis数据类型有:字符串、列表、哈希表、集合、有序集合、地理空间、基数统计、位图、位...
- 说说Redis的数据类型(redis数据类型详解)
-
一句话总结Redis核心数据类型包括:String:存储文本、数字或二进制数据。List:双向链表,支持队列和栈操作。Hash:字段-值映射,适合存储对象。Set:无序唯一集合,支持交并差运算。Sor...
- Redis主从复制(Redis主从复制复制文件)
-
介绍Redis有两种不同的持久化方式,Redis服务器通过持久化,把Redis内存中持久化到硬盘当中,当Redis宕机时,我们重启Redis服务器时,可以由RDB文件或AOF文件恢复内存中的数据。不过...
- 深入解析 Redis 集群的主从复制实现方式
-
在互联网大厂的后端开发领域,Redis作为一款高性能的内存数据库,被广泛应用于缓存、消息队列等场景。而Redis集群中的主从复制机制,更是保障数据安全、实现读写分离以及提升系统性能的关键所在。今...
- Redis + MQ:高并发秒杀的技术方案与实现
-
大家好,我是一安~前言在电商秒杀场景中,瞬间爆发的海量请求往往成为系统的生死考验。当并发量达到数万甚至数十万QPS时,传统数据库单表架构难以支撑,而Redis与消息队...
- Redis面试题2025(redis面试题及答案2024)
-
Redis基础什么是Redis?它的主要特点是什么?Redis和Memcached有什么区别?Redis支持哪些数据类型?Redis的字符串类型最大能存储多少数据?Redis的列表类型和集合类型有什么...
- Redis学习笔记:过期键管理与EXPIRE命令详解(第七章)
-
在Redis中,过期键(ExpireKey)机制是实现缓存自动失效、临时数据管理的核心功能。EXPIRE命令作为设置键过期时间的基础工具,其工作原理与使用细节直接影响系统的内存效率和数据一致性。本章...
- Redis传送术:几分钟内将生产数据迁移到本地
-
在生产环境中使用Redis就像一把双刃剑。它快速、强大,存储了大量实时数据——但当你想要在本地调试问题或使用真实数据进行测试时,事情就变得棘手了。我们要做什么?我们想要从生产环境Redis实例中导出键...
- 使用redis bitmap计算日活跃用户数
-
Metrics(指标)在允许延迟的情况下,通常通过job任务定时执行(如按小时、每天等频率),而基于Redis的Bitmap使我们能够实时完成此类计算,且极其节省空间。以亿级用户计算“日活跃用户...
- 大部分.NET开发者都不知道的Redis性能优化神技!
-
你还在为Redis存储空间不够而发愁吗?还在为Json数据太大导致网络传输缓慢而头疼吗?今天我要告诉你一个让Redis性能飙升300%的秘密武器!这个技巧简单到让你怀疑人生,但效果却强大到让你的老板对...
- Redis学习笔记:内存优化实战指南(第六章)
-
Redis作为内存数据库,内存使用效率直接影响系统性能与成本。对于处理大规模数据的场景,合理的内存优化能显著降低资源消耗,提升服务稳定性。本章将基于Redis的内存管理特性,详解实用的优化技巧与最佳实...
- 大数据-47 Redis 内存控制、Key 过期与数据...
-
点一下关注吧!!!非常感谢!!持续更新!!!AI篇持续更新中!(长期更新)AI炼丹日志-30-新发布【1T万亿】参数量大模型!Kimi-K2开源大模型解读与实践,持续打造实用AI工具指南!...
- Redis学习笔记:内存优化进阶与实战技巧(第六章·续)
-
上一节我们介绍了Redis内存优化的基础策略,本节将深入更多实战技巧,包括数据结构的精细化选择、过期键的内存回收机制,以及大规模场景下的内存管理方案,帮助你在高并发场景下进一步提升内存利用率。七、数据...
- 低配服务器(2核3G)宝塔面板的Redis优化指南:512MB内存高效运行
-
在2核3G内存的低配服务器上部署Redis服务时,资源分配不当极易导致服务器崩溃。本文针对宝塔面板环境(PHP8.2+MariaDB10.6+Nginx),提供经过实战验证的Redis优化...
- Redis:为什么您应该多缓存少查询(为什么使用redis做缓存而不是其他的消息队列入kafka)
-
还在一次又一次地调用相同的API吗?这不仅效率低下——而且成本高昂。性能缓慢、成本更高,用户体验更差。让我们停止这种做法——从这篇文章开始。:D首先您需要了解Redis,简单来说,它是一个超快速的内存...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle 空为0 (51)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (83)
- php redis (97)
- redis 存储 (67)
- redis 锁 (74)
- 启动 redis (73)
- redis 时间 (60)
- redis 删除 (69)
- redis内存 (64)
- redis并发 (53)
- redis 主从 (71)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)