Serverless 在阿里云函数计算中的实践
mhr18 2025-03-29 19:33 25 浏览 0 评论
近日,阿里云 aPaaS&Serverless 前端技术专家袁坤在 CSDN 云原生 meetup 长沙站分享了 Serverless 在阿里云函数计算 FC 的实践。
互联网软件架构演进
我们先简单回顾下互联网软件架构的演进之路。
单机部署
在单机部署中,将所有的业务和数据库都部署在一台主机中。
此架构的优点是:开发、部署以及运维都非常简单。缺点是:一旦遇到流量过大或者机器故障,整个系统瘫痪,甚至丢失业务数据,造成巨大业务损失。
集群化部署
针对上述架构问题,常用的解决方案是采取水平扩容的方式进行集群化部署。引入 SLB 的流量网关路由,进行负载均衡。集群化部署本质上是单体架构,开发人员在项目开发的时候需要额外注意,比如要使用 cookie 进行鉴权,session 就不能存储在本地,需要引入 Redis 进行单独存储。集群化部署可以通过快速水平扩容解决流量突增或机器故障的问题。
微服务拆分
随着业务的发展以及团队规模的扩张,单体架构这样紧耦合的方式会带来越来越多的问题,架构的灵活性和可扩展性成为阻碍业务发展的重大挑战。微服务架构应运而生。
对比单体架构,微服务架构远比其复杂,也衍生了很多新技术,比如:API 网关、服务注册、服务发现、RPC 通信。
Serverless 架构
从单体架构到微服务架构,从单机部署到集群化部署,互联网软件架构越来越复杂,公司需要投入大量精力和成本进行底层技术的升级和维护。下图是 Serverless 架构,和单体架构不同的是将对应的组件换成 Serverless 云产品。
技术演进的本质是更好服务业务,传统开发方式使企业花费更多的精力打磨底层技术细节,而 Serverless 架构就是让开发者专注业务实现从而创造更大的业务价值。
Serverless 架构的优势很明显:
- 不关注底层基础设施,专注业务价值创造
- 自动弹性,从容面对突增流量
- 按资源使用计费,避免资源闲置浪费
Serverless 架构探讨
先来看一下 FaaS 的执行过程。蓝色部分是用户手动管理,只需要交付代码,其他的启动、运行、运维等都是在 FaaS 平台进行。
但是此架构会产生一些问题:
- 代码碎片化,无法统一管理和部署
- 本地环境和线上环境不一致,无法处理依赖兼容性问题
- 进行本地 Debug 和线上调试困难
- FaaS 厂商对代码包有限制,无法部署大代码包
- 没有统一的标准,导致厂商锁定问题
Serverless Devs
针对上述问题,Serverless Devs 可以帮助开发者更好地开发管理 Serverless 应用,它具备以下几个特点:
- 无厂商锁定,Serverless Devs 帮助开发者将应用部署在各个厂商上面
- 开源开放,代码逻辑无任何黑洞
- 功能可插拨,Serverless Devs 通过组件的形式提供,开发者完全可以根据需求,快速开发适合自己的工具套件
- 项目全生命周期管理能力,Serverless Devs 是用户进行项目初始化创建、开发、调试、部署等全生命周期管理的工具,简化 Serverless 应用开发
如果说 Serverless 架构可以帮助开发者开发应用,那么 Serverles Devs 就是帮助 Serverless 开发者更好地开发 Serverless 应用!
Serverless 架构实践
Serverless Devs 官网实践
通过上面的介绍可以看出 Serverless Devs 开发者工具并没有提供业务,业务的实现由组件提供,而组件本身分散在不同的 GitHub 仓库中。
Serverless Devs 官网有下面几个诉求:
- 不同仓库下 GitHub 源中的文档汇集在一个界面进行展示
- 组件开发者专注组件文档编写,文档自动实时同步到官网
- 组件一旦有变动,官网能够自动部署和构建
整体方案如下:
开发者在 GitHub 更新文档,触发 webhook 钩子配置的 Http Serverless 函数。这里需要注意的是:由于组件的文档数目不定以及 GitHub 网络不稳定等问题,如果所有的工作都在 Http 函数中处理,非常容易导致超时,所以将所有的处理逻辑放在异步调用中,执行完后将处理的结果投递到钉钉或者邮件等渠道。
阿里云函数计算控制台实践
阿里云函数计算 FC 控制台是用户使用函数计算产品的第一站,控制台的用户体验至关重要。在架构上面临几个问题:
- 后端采用中心化部署模式,用户在海外访问延时非常高
- 需要用户手动建设监控、日志、灰度等能力,导致运维成本偏高
- 研发效率较低,开发过程中前后端需要协调沟通,协作成本较大
整体解决方案如下:
左侧是阿里云通用的网关,负责统一鉴权和安全等逻辑,抽离出 BFF(Backend for Frontend)层,这部分的特点如下:
- 整体 BFF 部署在阿里云函数计算 FC 上,开发者无需手动运维
- BFF 层由前端工程师负责,前端工程师更好地深入业务,提供优秀的用户体验
- 后端工程师专注于底层稳定性和原子能力的提供,通过 SDK 的方式进行交付给 BFF
通过 Serverless 实现的 BFF 不仅给业务带来了极大的灵活性,对于前端工程师这个群体也有质的改变:从之前的技术视角转变到更加关注业务价值和用户体验提升。
CD 构建实践
常规的自建 CD 构建集群方案通过 Jenkins 或 Tekton 框架实现业务逻辑的编排,资源层面使用 K8s 部署,实现弹性伸缩。如果需要实现简单的云端构建 CD 方案,采用上文的架构略显复杂。
CI/CD 的业务场景有以下几个特性:
- 通过事件触发执行
- 流量无法提前预估
- 需要长时间在后台运行,对延时不敏感
- 由于网络时延等问题,需要设计失败重试机制
这些特性完全是为 Serverless 量身打造的。实现方案还使用了异步函数,将构建的所有流程导到异步函数中处理,整个编排逻辑通过 Serverless Devs 进行,完美实现了一个性能稳定的 CD 构建集群。
阿里云函数计算应用中心这款产品的底层的 CD 能力完全基于上述的原理进行实践,大家可以自行体验。
异步函数
实践中有非常多使用到异步函数的场景,这里简单介绍下异步函数。
总结来看,异步函数有四个特点:
1、可长时间运行,两个小时到一天不等
2、可以设置自动终止,自由调节时间,节约资源
3、可把触发结果分发给各个事件兑现中心
4、有三次机会可在失败的情况下自动重试
原文链接:
http://click.aliyun.com/m/1000349068/
本文为阿里云原创内容,未经允许不得转载。
相关推荐
- 如何通过 Redis 日志排查连接超时问题
-
Redis是一种高性能的内存数据存储服务,但在高并发或误配置情况下,可能会出现连接超时问题。借助Redis日志,可以快速定位并解决连接超时的根本原因。以下是具体的排查和解决步骤:1.什么是R...
- 给你1亿的Redis key,如何高效统计?
-
前言有些小伙伴在工作中,可能遇到过这样的场景:老板突然要求统计Redis中所有key的数量,你随手执行了KEYS*命令,下一秒监控告警疯狂闪烁——整个Redis集群彻底卡死,线上服务大面积瘫痪。今天...
- Redis分布式锁的安全性分析与实践指南
-
一、Redis分布式锁的核心原理Redis分布式锁通过SETNX(SetifNotExists)和EXPIRE(Expire)指令实现原子性操作,结合UUID生成唯一标识符,确保锁的互斥性和安全...
- 高可用Redis分布式锁:秒杀系统中的锁战
-
引言在分布式系统中,“程序猿的终极武器是并发控制”。当多个服务实例同时访问共享资源时,如何避免数据不一致和重复操作?答案是分布式锁。Redis凭借其高性能和原子性操作,成为实现分布式锁的首选方案。...
- Redis分布式锁(redis分布式锁解决超卖)
-
场景描述简单模拟一个高并发库存扣减场景,商品库存加载到Redis缓存,如:127.0.0.1:6379>setproduct:stock:101200无锁状态操作从缓存中获取对应商品的库存...
- Redis 分布式锁和 ZooKeeper分布式锁
-
Redis分布式锁和ZooKeeper(简称zk)分布式锁都是用来解决在分布式系统中多个节点之间竞争资源的问题。它们各自有不同的特点和适用场景。Redis分布式锁Redis实现分布式锁主要是...
- Redis vs ZooKeeper锁:高并发下的生死对决,谁才是最终赢家?
-
在分布式系统中,锁是控制资源访问的重要机制。Redis和ZooKeeper作为两种主流的分布式锁实现方案,各有优劣。本文将从原理、性能、代码实现三个维度进行硬核对比,助你做出最佳技术选型。一、原理对比...
- 说说Redis的大key(redis key大小限制)
-
一句话总结Redis大key指存储超大值(如字符串过大、集合元素过多)的键。主要成因包括:1.设计不合理,未拆分数据结构;2.业务需求(如缓存整页数据);3.数据持续积累未清理;4.使用不当的集合类型...
- PHP Laravel框架底层机制(php框架的底层原理)
-
当然可以,Laravel是最受欢迎的PHP框架之一,以优雅的语法和丰富的生态而闻名。尽管开发体验非常“高端”,它的底层其实是由一系列结构清晰、职责分明的组件构成的。下面我从整体架构、核心流程、...
- PHP性能全面优化-值得收藏(php优化网站性能)
-
PHP项目卡顿频发,老技巧失灵?隐藏漏洞竟在代码循环里。上周公司服务器突然开始卡顿,测试发现用户请求响应时间翻倍。我们先按以前学的方法做了基准测试,用AB工具压测时发现2000并发就有5%错误,换成S...
- PHP+UniApp:低成本打造外卖系统横扫App+小程序+H5全平台
-
在餐饮行业数字化转型中,外卖系统开发常面临两大痛点:高昂的开发成本(需独立开发App、小程序、H5)和多端维护的复杂性。PHP+UniApp的组合通过技术复用与跨平台能力,为中小商家和开发者提供了“降...
- 从需求到上线:PHP+Uniapp校园圈子系统源码的架构设计与性能优化
-
一、需求分析与架构设计1.核心功能需求用户体系:支持手机号/微信登录、多角色权限(学生、教师、管理员)。圈子管理:支持创建/加入兴趣圈子(如学术、电竞)、标签分类、动态发布与审核。实时互动:点赞、评...
- PHP 8.0性能翻3倍?四年亲测:这些项目升了哭晕!
-
2020年那个感恩节,当PHP8.0带着“性能翻倍”的豪言横空出世时,无数程序员连夜备份代码准备升级。四年过去了,那些宣称“性能提升3倍”的项目,真的跑出火箭速度了吗?还记得当时铺天盖地的宣传吗?“...
- 我把 Mac mini 托管到机房了:一套打败云服务器的终极方案
-
本内容来源于@什么值得买APP,观点仅代表作者本人|作者:薯仔不爱吃薯仔我把我积灰的Macmini托管到机房了,有图有真相。虽然画质又渣又昏暗,但是!这就是实锤。作为开发者,谁不想拥有个自己的服...
- 从phpstudy到Docker:我用一个下午让开发效率翻倍的实战指南
-
一、为什么放弃phpstudy?上周三下午,我花了3小时将本地开发环境从phpstudy迁移到Docker,没想到第二天团队反馈:环境部署时间从2小时压缩到5分钟,跨设备协作bug减少70%。作为一个...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle 空为0 (51)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (83)
- php redis (97)
- redis 存储 (67)
- redis 锁 (74)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)