QuBranch与QuTrunk初试
导读 QuBranch与QuTrunk项目是启科量子发起的量子编程软件工具开发项目。QuBranch是以VS Code庞大的生态群为基础,专为量子编程开发的一种编程工具,支持Windows、Mac、Linux等操作系统和编辑、调试、量子模拟执行等功能,可为量子编程提供集成开发环境。QuTrunk是启科量子自主研发的量子编程框架,基于python提供量子编程API,对量子编程涉及到的基本概念做了代码层面的抽象封装和实现,主要为量子编程提供底层服务。为加速量子软件开发与实践进程,本文将简要介绍QuBranch与QuTrunk,并通过软件已开发功能进行量子算法运行演示。
1.QuBranch与QuTrunk项目简介
量子编程也称为量子计算,是汇编指令序列在电脑中已执行的程序。量子编程,首先由编译器将高级语言编写的量子程序转化为指令集语言,然后在真实的量子计算机或模拟器上运行,最终查询量子程序运行结果。QuBranch与QuTrunk是由启科量子发起的量子编程框架项目。启科量子软件产品框架包括量子基础架构层、量子混合云基础架构层、量子编程框架层、量子应用层,其中量子编程框架层包括QuBranch、QuTrunk、QuFlower等,QuTrunk为量子编程工作提供基础的架构体系,QuBranch主要为用户提供便捷高效的量子编程开发环境,所有支持Python编程的IDE均可安装使用QuTrunk。
启科量子软件产品的技术先进性主要体现于量子软件产品体系架构在量子软件产品布局的完整性、产品的独立性和可扩展性。整个量子软件产品体系主要采用分层架构,既可至上而下解耦为独立产品,又可以随意搭配组合为新的产品体系对外使用,QuBranch+QuTrunk+QuBOX、QuBranch+QuTrunk+QuRoot等。其中,软件产品体系的每一层接口预留充足、全面,可为后续软件产品的升级迭代预留充足的空间。以下将对QuBranch和QuTrunk等内容进行介绍。
1.1QuBranch项目
项目介绍
QuBranch是一款量子编程集成开发环境软件。在了解量子计算领域的编程软件之前,经典计算机编程中是不可逾越的话题。在经典计算机的编程工具中,IDE(Integrated Development Environment)也称集成开发环境,集成了许多常用的软件开发和测试工具,可以为开发者们提供高效便捷的代码编写服务。一个完备的IDE应包括了代码编辑器、调试器、编译器,并支持语法高亮、代码自动补全、程序语言等多种功能。在经典计算的开发工作中,VS Code是一款成熟且广为使用的跨平台代码编辑器,已成为多语言开发人员首选编辑器之一,不仅支持Windows、Mac、Linux系统还支持丰富的编码语言和格式编写。为使量子编程软件更适于经典计算机行业人员的量子编程需求和习惯,启科量子QuBranch一方面继承了经典编程工具已有的优良功能,更为重要的一点是延续了VS Code强大的扩展生态系统。QuBranch项目旨在为有志于开启量子编程之旅的开发者们提供高效智能经典量子编程工具。
QuBranch功能设计 主要功能有代码编辑、调试、量子模拟执行等功能,可支持Windows、Mac、Linux系统。启科量子研发团队基于VS Code强大的生态系统,开发出可进行量子编程的编程软件,使用人群将覆盖学生、量子开发人员、科研人员等多个群体。QuBranch桌面版可供用户下载、安装在PC/笔记本上,使用本机进行量子计算模拟或配置使用远程计算资源;未来的Web版作为QuFertilizer的接口,使用户无需安装软件,通过浏览器即可使用量子云中的计算资源。使用量子语言进行量子编程是开发工作中较基础环节,如何最大效率的构建量子程序是研究团队一直追求的目标。QuBranch致力于使没有物理专业背景的技术人员跨越量子知识障碍,轻松使用QuBranch开发量子程序,发挥量子计算的优异特性。启科自研的量子编程类软件除QuBranch外,还包括了启科自主研发的Python量子编程语言框架QuTrunk、量子算法库QuFlower等。
QuBranch功能如下:
丰富的可视化效果与有效的管理功能。在环境准备阶段,QuBranch可预选量子框架、基础环境和包。QuBranch中可高效管理Python和C++环境、使用Python和C++等经典宿主语言编辑代码、轻松切换编程语言。其中QuComposer功能模块可实现以图形拖拽和代码编辑两种方式绘制量子线路,量子线路与代码区域还具有双侧联动效果。用户在使用QuBranch时可一键导入工具库,编码过程中还支持代码提示、代码联想、代码高亮、语法错误提示等多种功能有效辅助开发工作。
量子程序调试与运行。QuBranch支持错误代码位置跳转,用户可通过观察程序运行步骤,发现程序中出现的逻辑错误,并及时对语法和逻辑错误做出修正。量子模拟执行方面,启科量子研发团队自主研发的QuTrunk目前以量子计算模拟器QuSimulator作为后端,还可扩展支持更多后端支持量子程序的运行与调试。
一站式量子编程开发环境。QuBranch可通过结合量子编程框架QuTrunk、调用QuFlower的量子算法资源,最终实现多种量子算法的运行。现阶段启科已经可以通过QuTrunk的backend接口,采用RPC与QuSimulator在QuBranch上模拟运行多种量子算法。
以柱状图、折线图、雷达图等多种图表形式直观显示程序输出信息和设备信息。QuBranch可以自动统计量子态信息、量子设备信息和运行数据信息,并以柱状图、折线图、雷达图等多图表形式显示数据输出结果,输出json数据格式化。程序运行结束后还支持生成量子线路图,并一键导出生成的图形。
一键拖拽实现可视化量子编程。QuBranch中通过查看-命令面板调用QuComposer实现可视化编程。只需通过简单拖拽量子逻辑门即可生成量子线路和相应代码,测量结果将由QuComposer自带的柱状图显示。
QuBranch项目旨在研发经典适用的量子编程开发工具,联接开发者在经典计算中的开发习惯需求,让更多非物理专业背景的爱好者或经典计算机编程人员能轻松参与到量子编程队伍中来。
1.2QuTrunk项目
项目介绍
启科量子自主研发一款量子编程框架QuTrunk,为量子编程开发提供了一个通用的软件环境。QuTrunk使用Python作为宿主语言,利用Python的语法特性实现针对量子程序的DSL(领域专用语言),所有支持Python编程的IDE均可安装使用QuTrunk。
QuTrunk基于量子逻辑门、量子线路等概念提供量子编程所需的各类API。这些API分别由相应的模块实现,比如QCircuit实现量子线路功能,Qubit实现量子比特,Qureg实现量子寄存器,Command对应每个量子门操作的指令, Backend代表运行量子线路的后端模块,gate模块实现了各类基础量子门操作。同时QuTrunk还可以作为其他上层量子计算应用的基础,比如:量子算法、量子可视化编程、量子机器学习等。
目前QuTrunk以QuSprout作为后端。QuSprout也是启科量子自研的一款基于经典计算资源的量子计算模拟软件,支持支持多线程、多节点、GPU加速,也可预安装在QuBox 中。QuTrunk为量子编程工作提供了量子编程框架,建立起一套统一的量子编程规范,进而实现量子程序开发的“降本增效”。启科量子目前正在筹备QuTrunk项目的开源计划,旨在通过产品开源的方式促进量子计算软件技术的发展与普及。
QuTrunk框架设计要点:
- ? 灵活的后端设备扩展功能 QuTrunk设有多种量子计算后端模块,如:BackendLocalPy(本地Python版本模拟器);BackendLocalCpp(本地C++版本模拟器);BackendQuSprout(量子计算云服务);BackendIBM(IBM量子云计算平台)等。开发者在使用QuTrunk开发量子程序时,可选择启科自研的量子计算设备QuBox作为后端,使用丰富的量子模拟资源运行量子算法。QuBox连接方式包括远程连接模式和本地模式两种。在采用远程连接方式时,QuBox只提供量子编程API,可维护量子线路所有状态,极大减少对本地资源的占用情况。而本地模式可以使QuTrunk成为量子编程与量子模拟的全栈框架。QuTrunk使用的本地量子计算后端可提供全振幅量子模拟计算。量子云服务可提供OMP多线程、多点并行MPI、GPU等计算加速,同时预留了对接离子阱量子计算机的接口。
- ? 普适的混合量子-经典编程形式 QuTrunk支持混合量子-经典程序编写,已设计了量子线路分段执行机制,提供QuSL量子汇编指令标准,与Python代码完全兼容。由于量子算法中也包含有部分经典计算,因此在使用QuTrunk进行编程的过程中,当经典算法与量子算法产生依赖交互时,QuTrunk可立刻将当前线路信息发送至后端运行并获取运行结果。目前的量子计算软件产品大多使用量子模拟器替代量子计算机,在模拟器模拟完成理论中量子比特的全部状态后,返回最终的真实结果。
为了能在量子虚拟机中更好的模拟真实量子计算机带来的计算误差,QuTrunk支持在量子线路初始化时设置噪声模型,可为用户带来真实的量子编程体验。QuTrunk的全振幅量子模拟功能可以一次性模拟计算量子态的所有振幅,在初始化时配置适当的计算方式,即可体验差异化的计算效率。在通用量子计算机正式问世之前,混合量子-经典计算将是量子计算领域一种很好的发展思路。
- ? 简易的编程语言设计与丰富的量子门资源 在QuTrunk框架设计之初,研发人员充分遵循产品的易用性、便捷性等设计原则。通过重载“ * ”或“ |”运算符为开发者提供一种近似物理表达式的运算操作方式,让各种量子门表现形式更加直观,降低使用门槛。量子逻辑门是量子算法的基本组成单元,QuTrunk对所有量子逻辑门及量子编程涉及到的基本概念进行了封装与实现,支持主流的量子算法。在使用QuTrunk进行量子编程时,开发者只需通过提供的量子编程API即可直接调用量子逻辑门进行使用。
- ? 提供双向解析支持和完备的数据信息统计 QuTrunk框架可在运行的同时不改变整个状态矢量,并获取线路的状态取值,比如计算某种状态出现的概率信息、计算所有状态的概率振幅信息等。此外,QuTrunk框架还支持量子线路运行统计功能,如量子比特数、量子门等量子线路信息及运行耗时等设备信息。QuTrunk还提供了QASM的解析功能,即提供双向支持:支持导出OpenQASM,也支持将OpenQASM解析为QuTrunk格式。
- ? 直观的量子线路打印与可视化编程功能 QuTrunk与启科自研的量子集成开发环境QuBranch配合使用时,支持可视化量子编程,只需通过简单拖拽量子逻辑门符号即可自动生成相应代码和量子态柱状图等。QuTrunk支持量子线路打印功能。使用时只需要输入线路打印命令,即可在终端以字符串方式打印量子线路。在量子线路的图形表示中,有多条并排直线分别代表不同的量子比特。其中直线从左到右表示时间顺序,直线上排列的不同符号表示不同的量子逻辑门操作。经过各个逻辑门操作后的量子态都会发生相应的改变。通过QuTrunk打印出的量子线路,可以更直观的了解到量子线路中的线路设计。
2.量子编程软件技术
2.1 混合量子与经典体系
业界对于量子编程软件的研究和设计是从经典程序设计模型、方法和技术扩展到量子领域。因此量子编程关键在于如何将量子并行计算的优势与现有传统编程模型结合,最大限度地发挥量子计算的计算能力与优势。借助这一思想,QuBranch与QuTrunk项目设计充分利用经典计算软件优势,将可实现量子程序的编辑、调试与编译功能。目前,整合了量子编程框架QuTrunk的QuBranch已经可以实现Grover算法运行。从1946年世界上第一台通用计算机诞生至今,经典计算机风雨之程已近八十年之久,软件体系发展完善。量子编程作为后起之秀还将面临哪些技术挑战也是研发的关注点和着力点。
在量子编程软件开发中,创建和调试量子程序的软件工具对于所有量子计算机来说,如同量子数据必不可少。有报告将量子计算的硬件结构划分为四个层次:一是量子比特所在的“量子数据层”;二是根据需要对量子进行操作和测量的“控制和测量层”;三是确定操作和算法序列的“控制处理器层”;四是用于处理网络访问、大存储阵列和用户界面的“主处理器层”,主处理层通过高速宽带与控制处理器连接。
类比经典计算编程,量子编程软件则应包括能够让程序员描述量子计算算法的编程语言、分析量子程序语言并将其映射到量子硬件的编译器,以及可在特定量子硬件上实现分析、优化、调试和测试程序的其他软件支持,如需要仿真和调试工具来调试软硬件、需要优化工具来帮助高效实现算法、需要验证工具来帮助确保软硬件的正确性等。
2.2量子编程语言
量子编程语言的层级由低到高分别是:量子设备语言(量子比特)、量子设备指令语言(量子比特上的门序列)、量子程序(简易方式编程的量子算法)、量子算法(仅处理参数)、量子通用语言(适用于所有设备的语言)。量子计算机行业预设未来的量子计算机可能是量子计算机和经典计算机的混合结构。从量子硬件设备当下的发展来看,混合量子-经典算法(变分量子算法)是一个较合理的模型。它结合了量子设备的计算能力与经典设备的优化方法,可借助经典计算机尽可能发挥量子设备的计算能力。
在传统的计算机运算中,调试程序是软件开发中最耗时的任务之一。量子计算领域中如果没有调试器等工具的帮助,即使是经验丰富的量子程序员也会因为程序编写中的错误导致程序结果无法给出正确的运算结果,因此量子程序调试工具开发也是一个很大的挑战。
QuBranch的调试功能将类比经典计算编程调试功能,及时帮助量子编程开发者们排查量子编程中的错误,减少开发者们程序编写的时间成本。完成一系列编辑、调试工作后,量子计算程序最终需要被转化为量子计算机能够执行的一种表示方法。量子编译器则需要对量子程序进行一系列变换以满足量子处理器的物理约束,最终完成量子程序运行。
2.2.1QuSL量子汇编
QuTrunk使用python作为宿主语言,利用python的语法特性实现针对量子程序的DSL(领域专用语言),我们把用于量子编程的专用语言称为:QuSL(一套类似Openqasm的量子汇编语言),QuSL主要特点是最左边是一个量子门操作,中间加入( * )号链接符,最右边是操作的量子比特,其形式如下:
gate?*?qubits
几个例子:
H?*?q[0];???????????????#?对q[0]做hadamard门操作
CNOT?*?(q[0],?q[1]);????#?q[0]为控制位,q[1]为目标位
All(Measure)?*?q????????#?对q代表的所有量子比特做测量操作
使用该标准是充分利用了python语法对( * )运算符的重载特性。该表形式更接近量子物理计算公式,同时 ( * )在计算机编程语言上表示乘法的意思,借此表示左边的量子门操作实际上是对量子比特做矩阵乘法运算。该标准编写的量子汇编可以直接被QuTrunk析运行,不需要做词法/语法方面的解析处理工作。基于该特性,QuTrunk可以无缝衔接QuBranch通过可视化量子编程生成的量子线路,即QuTrunk可以直接运行QuBranch生成的量子线路(只需做一些简单的初始化工作),而无需做语法上的编译/转译处理,下面是QuSL部分量子门操作介绍(具体可参见http://developer.queco):
星号(*)左边为相应的门操作,右边出现的a, b, c…均代表操作的量子比特位
//H(hadamard):?哈达马门,对a做H门操作,常用于使量子比特处于叠加态
H?*?a
//X(NOT):?非门(Pauli-X)对a进行取反操作,?量子比特绕布洛赫球的x轴旋转pi角度
X?*?a
//Y:?Pauli-Y,?量子比特绕布洛赫球的y轴旋转pi角度
Y?*?a
//Z:?Pauli-Z,?量子比特绕布洛赫球的z轴旋转pi角度
Z?*?a
//CNOT(CX):?受控非门,a作为控制位,b为目标位,如果a为1则对b进行取反,如果a为0则不做任何操作
CNOT?*?(a,?b)
//Toffoli:?托佛利门,a,?b作为控制位,c为目标位,?如果a,b均为1则对b进行取反,否则不做任何操作
Toffoli?*?(a,?b,?c)
//Measure:?测量门,对a进行测量,结果要么是0,要么是1,测量结果受概率振幅影响
Measure?*?a
现阶段,量子编程软件工具的研究工作已取得一些良好进展,如华为的量子计算云平台HiQ、本源量子基于C++的QPanda、启科量子的QuBranch和QuTrunk等。即便如此,量子编程软件的开发工作还面临系列挑战。例如,在量子算法层面,量子计算系统的状态空间庞大,在经典计算机中即使是模拟60位左右或更多量子位的量子计算算法,也很难在合理的时间或空间内完成。此外,量子程序的调试和验证也是一项很大的挑战。在经典计算机中,程序员可以在程序的任意点停止执行并能检查机器状态值和其他项值,以便检查程序中的错误。而量子计算程序需要很大的状态空间,在进行物理量子位测量时面临崩溃,且测量后不能重启量子计算执行。因此,量子程序的调试与验证技术也待突破。
3.[QuBranch-QuTrunk-QuSim]产品使用示例
此次QuTrunk运行算法将QuBox作为后端提供量子模拟资源(QuBox为预装了QuSimulator的PKS体系硬件设备)。
?#?apply?gate
????H?|?qr[0]
????CNOT?|?(qr[0],?qr[1])
????NOT?|?qr[0]
????Toffoli?|?(qr[0],?qr[1],?qr[2])
????P(pi/2)?|?qr[2]
????R(pi/2)?|?qr[0]
????Rx(pi/2)?|?qr[1]
????S?|?qr[0]
????Sdg?|?qr[0]
????T?|?qr[0]
????Tdg?|?qr[0]
????X?|?qr[2]
????Swap?|?(qr[0],?qr[1])
????SqrtSwap?|?(qr[0],?qr[1])
????SqrtX?|?qr[0]
????C(P(pi/2))?|?(qr[0],?qr[1])
????C(Rx(pi/2))?|?(qr[0],?qr[1])
????Rzz(pi/2)?|?(qr[0],?qr[1])
- ? 电路打印与结果测量如下:
?#?print?circuit
????Printer.print_circuit(qc)
????qc.run()
?#?print?measure?result
#?print([int(q)?for?q?in?qr])
- ? 获取QuBox后端信息
import?yaml
import?os
BASE_DIR?=?os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
def?get_qubox_setting():
????"""获取Qubox后端配置信息"""
????with?open(BASE_DIR?+?"/config/qubox.yaml")?as?f:
????????yaml_content?=?yaml.load(f,?Loader=yaml.FullLoader)
????????return?yaml_content
def?get_qulocalbox_setting():
????获取Qulocalbox后端配置信息
????with?open(BASE_DIR?+?"/config/qulocal.yaml")?as?f:
????????yaml_content?=?yaml.load(f,?Loader=yaml.FullLoader)
????????return?yaml_content
3.1示例一:Grover算法
步骤1 首先在QuBranch中导入随机数模块和QuTrunk中的部分模块
????import?math
????import?random
????from?numpy?import?pi
????from?QuTrunk.core.circuit?import?QCircuit,?InitState
????from?QuTrunk.core.gates?import?H,?X,?C,?Z
????from?QuTrunk.core.calculator?import?Calculator
????from?QuTrunk.core.counter?import?Counter
步骤2 调用Oracle门和Diffuser函数,将量子态进行相位翻转和放大
????def?apply_oracle(qr,?num_qubits,?sol_elem)...
????def?apply_diffuser(qr,?num_qubits)...
步骤3 运行Grover算法,不断进行G迭代直至搜索出目标值
????def?run_grover():
????num_qubits?=?15
????num_elems?=?2?**?num_qubits
????num_reps?=?math.ceil(pi?/?4?*?math.sqrt(num_elems))
????print("num_qubits:",?num_qubits,?"num_elems:",?num_elems,?"num_reps:",?num_reps)
步骤4 输出运行结果
从结果中可观察到搜索的量子比特数为15Qubit、量子门数为11726个、总的运行时间为10.8659s(其中QuBox运行时间为10.6309s,QuTrunk运行时间仅为0.2350s)。
????Counter(quit=15)
????qubits?=?15
????quantum_gates?=?11726
????total_time?=?10.865945100784302
????qubox_time?=?10.630940914154053
????qutrunk_time?=?0.23500418663024902
以上Grover算法中生成随机数目标为17560,最终搜索结果概率峰值为0.999986接近于1。在搜索过程中,当此概率出现峰值且第一次下降时即停止搜索,认为已经找到目标值即为17560。
3.2示例二:贝尔电路
????from?qutrunk.core.circuit?import?QCircuit
????from?qutrunk.core.printer?import?Printer
????from?qutrunk.core.gates?import?H,?CNOT,?Measure
????qc?=?QCircuit()
????qr?=?qc.allocate(2)?#?allocate
????H?|?qr[0]???#?apply?gate
????CNOT?|?(qr[0],?qr[1])
????Measure?|?qr[0]
????Measure?|?qr[1]
????Printer.print_circuit(qc)???#?print?circuit
????res?=?qc.run(shots=1024)?#?run?circuit
????print(res.get_counts())?#?print?result
3.3示例三:量子随机数
步骤1 环境准备
from?qutrunk.core.circuit?import?QCircuit
from?qutrunk.core.printer?import?Printer
from?qutrunk.core.gates?import?H,?Measure,?All
from?qutrunk.core.counter?import?Counter
from?qutrunk.core.backends?import?BackendQuSim
步骤2 运行随机数比特,并归集信息
def?run_random_byte(backend=None):
????#?allocate
????qc?=?QCircuit(backend)
????qureg?=?qc.allocate(8)
????#?将统计信息归集到Counter类
????ct?=?Counter(qc)
步骤3 打印电路和输出信息结果
????All(H)?|?qureg
????All(Measure)?|?qureg
????#?print?circuit
????Printer.print_circuit(qc)
????#?run?circuit
????res?=?qc.run()
????#?print([int(q)?for?q?in?qureg])
????print(res.get_measure())
????ct.show_verbose()
if?__name__?==?'__main__':
????#?run_random_byte(backend=BackendQuSim())
????run_random_byte()
步骤4 输出结果生成量子随机数共[0, 1, 0, 1, 1, 1, 0, 1],量子门数为16。
qreg?q[8]
creg?c[8]
H?|?q[0]
H?|?q[1]
H?|?q[2]
H?|?q[3]
H?|?q[4]
H?|?q[5]
H?|?q[6]
H?|?q[7]
Measure?|?q[0]
Measure?|?q[1]
Measure?|?q[2]
Measure?|?q[3]
Measure?|?q[4]
Measure?|?q[5]
Measure?|?q[6]
Measure?|?q[7]
[0,?1,?0,?1,?1,?1,?0,?1]
==================Counter==================
Counter(quit=8)
qubits?=?8
quantum_gates?=?16
total_time?=?0.008860349655151367
qutrunk_time?=?0.007822990417480469
backend_time?=?0.0010373592376708984
4.结尾
QuBranch与QuTrunk项目位于量子基础架构层与量子应用层之间,连接着量子计算应用的迫切需求与愿景。QuBranch与QuTrunk项目共同推进着量子编程软件开发进程,致力于提供经典-量子混合的编程形式实现量子编程构想。启科量子的软件产品设计既要满足开发者传统的代码编程需求,也将以可视化的量子线路编排方式降低量子编程难度,让更多有志于量子程序开发人员轻松开启量子编程人生。量子并行计算优势将能应用于金融领域的多种量化分析情景、生物医药中的组合优化、信息搜索挖掘和算法推荐等大数据优化等多种优化场景。在量子的未知世界里,启科量子的编程开发项目将继续完善量子编程功能,让量子计算的应用图景逐渐清晰。
目前量子编程项目已经开源,欢迎各位开发者参与进来!以下附地址,感兴趣的小伙伴可以去体验下:
QuTrunk项目计划开源地址Github地址:
http://github.com/qudoor/qutrunk
QuBranch 开源地址:
http://github.com/qudoor/qubranch