百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

架构案例丨苏宁易购:商品详情系统架构设计

mhr18 2024-12-14 11:11 23 浏览 0 评论

商品详情系统介绍

基本介绍

商品详情系统是一个展示商品基本信息、参数等详情的系统,是商品购买的入口。它是电商平台中访问量最大的系统之一,苏宁易购大促期间PV量和UV量很大,这么大的访问量对系统的并发能力要求高。在业务上它与周边系统的关系是高耦合。依赖商品详情系统的的系统特别多,比如:促销系统、推荐系统、大聚惠、等众多营销系统、还有主数据系统、购物车、收藏夹等,业务复杂度高对系统设计提出更多的要求。

业务特点
  1. 重点在于数据展示

  2. 页面信息丰富,如:商品详情、商家列表、推荐、排行榜等

  3. 部分数据时效要求高,如:价格、库存等

  4. 业务上依赖的系统多

商品详情系统三要素

1. 展示

产品上需要设计好页面区分展示的内容

技术上主要是页面缓存设计、前端页面模版和JAVA程序的解耦

2. 数据处理

数据全部来源于其它系统,在数据上分为:

基本数据,外部系统传过来直接就可以使用的数据

聚合数据,需要加工才能使用的数据

3. 服务依赖

通过MQ解耦,异构数据

解决好以上三个问题就解决了此系统核心问题。

系统逻辑架构

商品详情系统在设计上分成前、中、后三层结构

  1. 前台负责展示,做为VIEW层不处理业务逻辑,负责渲染。

  2. 中台负责业务逻辑处理,提供数据给前台,同时还会对外部系统提供服务

  3. 后台负责主数据管理,做为数据管理层处理商品主数据、参数、品牌、供应商等,同时部分内容开放给运营进行维护、管理和异常处理等。

前台设计

页面设计:

1. 动静分离

JavaScript、CSS统一放到公共的静态服务器上,完全独立的子域名,防止脏Cookie问题和动态域名中无用Cookie问题,通过文件版本号解决系统新版和旧版本之间冲突问题。

所有图片由独立的分布式图片系统管理,对原图进行不同规格的无损裁减和压缩。

2. 异步加载和懒加载

商品价格、营销活动信息、库存等动态数据通过异步加载

非首屏数据做懒加载处理,提高首屏加载时间,比如评价、商品详情等内容

3. 多级缓存策略

a. 浏览器本地缓存

协商缓存,对于某些时效要求较高的资源通过Last-modified控制数据。做到StatusCode=304

强缓存,JS、CSS等静态资源或者一些页面碎片伪静态数据通过Expires、Cache-Control(http1.1支持)设置做到强缓存,在不强制刷新的情况下可以做到200(from cache)

b. CDN缓存

CDN分两条线有自营CDN和合作商的CDN,图片、静态资源与伪静态数据分

别放在不到的CDN上

c. Varnish缓存

Varnish在设计上负载使用轮询方式,不使用URL HASH策略,用空间换时间的策略, 从而避免热数据问题,也支持横向扩展。

Varnish 缓存和CDN缓存在失效时间错开,从而避免同时失效回源压力过大。

d. 精准缓存

精准缓存失效用于促销活动准时展示的场景,基于Varnish缓存,通过精准控制缓存有效期实现缓存精准失效保证促销活动准时切换。

组件逻辑设计:

商品详情系统中的购买按钮和加入购物车会因商品不同走不同的流程。如:大聚惠商品、定金团商品、预售商品等因促销方式不同,走不同的业务处理流程。促销模式变化多端,可能每个月都会有变化,通常的面向接口编程和加上工厂方法或者依赖管理框架Spring也很难做到真正的解耦,虽然这样做已经符合开闭原则。我们通过观察者模式很好的解决了这个问题。让前端的页面模版和JAVA应用程序之间真正的解耦。

后台设计

商品数据统一处理设计

商品详情系统商品主数据通过MQ消息来源于外部系统,比如:商品基本信息、参数、参数模版、品牌、品类等。我们设计时把共性抽出来分成三部分:

  1. 接受MQ消息并持久化通过Listener

  2. 解析报文

  3. 业务处理上简化为add、update、delete三个动作

  4. 异常组件以观察者模式实现,记录处理失败的MQ消息并对消息进行截取,并供下次再反向执行(一条MQ消息中会有一到多条参数、品牌,所以这里用截取)

SOA服务治理

解耦分两块,系统交互间的解耦和商品详情系统组件间的解耦以及业务流程的解耦

系统间的解耦通过SOA服务治理来解决,但是由于业务的特殊性在服务治理和性能以及一些其它因素的权衡中,我们还选择了一种共享Redis的方式来解决解耦

商品详情系统组件间解耦以及业务流程的解耦。

架构演变

1.0时代中规中矩,移动端完全移值PC的做法

我们使用中规中矩的部署方式Varnish+Apache+JBoss。

这种架构在针对中小系统没有什么问题,但像商品详情系统这种访问量巨大的系统会显的有点吃力。移动端对性能的要求更高。

2.0时代PC和移动端服务分离,移动端服务合并,性能优化

a. 服务分离与服务合并

PC和移动端的服务分离,以前是同一个接口支持多端,现在是每端都有独立的应用层服务,原子层服务共享。

移动端处理器和内存性能上的限制,采用服务的合并,且移动端用Nginx+Lua。

b. 公共服务

提出了一个公共服务,公共服务用来接受PC、WAP、APP公共的异步请求的服务。

c.分布式文件系统

商品详情页在回源过程中压力很大,基于其不可降级,我们提出了把商品详情页做为一个静态页放到分布式文件系统,当DB和Redis压力过大,直接调取分布式文件系统中数据

3.0时代重点优化移动端性能,接口合并颗粒度更细,增加聚合服务层

多端都使用Nginx+Lua,Nginx 的异步非阻塞型事件处理机制资源消耗少,并发能力高。

  1. 用Nginx+Lua做为整体的接入层

  2. 在Nginx接入层 加入三层缓存

  3. 只有聚合信息才会调用服务层,减少依赖关系

  4. 服务层数据通过Worker推送和刷新缓存,这亲服务层完全和DB隔离

  5. 移动端连接复用、链路复用、防劫持SDK开发等

商品详情系统数据流结构

上面介绍了商品详情系统前、中、后三层逻辑架构以及各层的设计方法,还介绍了部署架构演变,下面是商品详情系统数据流程结构的

1.0版本:

这个结构有两个问题:

数据异构结果没有和前端展示关联起来,数据变更不能在前端及时展示

还是没有解决前端接口依赖问题。

2.0版本:

把前端分成了三部分:

基础信息组件 不需要加工的消息、聚合信息组件(需要组合消息或者计算才能提供服务的)、实时数据组件处理对外部的依赖

数据异构后会以MQ形式通知基础服务,并会刷新缓存,这种结构后前端与数据层无直接依赖。

回源方案

回源是缓存中最头痛的问题,随着系统业务复杂度的上升,很难从整体上把控各种业务数据在回源时给一个系统带来的压力,如果回源处理不端在极端情况下会导致DB压力瞬间上升,DB不可用或者连接数满了等问题,会发生以前类似JVM GC回收时的“stop-the-world”问题。我们回源从被动更新缓存数据更改为主动推送缓存数据从根本上解决这问题。

数据变更通过listener推送缓存至varnish

多端融合

组织架构融合

原来PC端、移动端、TV端产品、开发、测试是分中心分部门,为真正做到多端融合,进行组织架构融合,产品、开发、测试合并到一个中心,统一协调。合并后工作效率变高,产品质量提升,进行小团队做战。

展示分离逻辑融合分离

展示分离是指在结合公司业务特性、产品自身特性以及降耦合指导思想进行PC、WAP、APP端(IOS、ANDROID)、TV端的展示端进行分离处理。

逻辑融合分离是指在原子服务层进行融合共享,从服务单一职责原则出发在不同端分别提供独立的服务并加上各自特性,做到接口可扩展性和服务隔离。真正做到一包部署多端使用互不影响,在业务可扩展性和可维护性上做到成本最低。

展示层分端独立部署

在物理层为了避免多端进行资源竞争、相互干扰进行独立部署

分布式存储

数据库

  1. 商品详情系统数据库用Mysql,采用主从加读写分离结构,注意:主从不在同一个物理机上,也不在同一组路由器中。应用层中业务上对时效性要求高的数据在写库中操作,业务上对于时效性要求不高数据在读库中操作。主从结构保证在主库出现故障比如岩机自动切换到从库。读库通过LVS做负载均衡做到高可用。

  2. DalClient组件支持对数据库的分库分表,同时支持横向扩展。

分布式Redis缓存

  1. 应用层逻辑优先从Reids中获取业务数据,如果Redis中没有,再从DB中获取。Redis采用sharding方案,每个sharding由一个master和一个salve组成,再通过sentinel保证高可用。当master出现不故障,比如网络跳动,sentinel会自动把salve切换为master,这个切换是毫秒级的。master和salve通过主动和被动两种方式来同步,做到最终一致性,符合CAP理论演变过的BASE理论。

  2. 借鉴JAVA GC中对内存分代思路解决Redis缓存过期产生的惊群现象。

荐文

相关推荐

软考架构师-案例分析之Redis(软考架构师真题)

软考架构师考试中,Redis的知识考了很多回,从最近几年来看,案例分析经常考,有的时候单独考,有的时候和其他知识点一起考。Redis过往的考试中,考过的知识如下:1、Redis特点,涉及数据类型、持久...

揭秘:视频播放网站如何精准记录用户观看进度

在互联网蓬勃发展的当下,视频内容已毫无争议地成为人们获取信息、享受娱乐休闲时光的核心方式。据权威数据统计,全球每天有数十亿小时的视频被观看,视频流量在网络总流量中的占比逐年攀升,预计在未来几年内将超过...

量子级一致性!Flink+Redis全局状态管理

百万级实时计算任务如何实现亚毫秒级状态访问?本文揭秘Flink+Redis的量子纠缠态状态管理方案,将状态延迟降至0.3ms。引子:实时风控系统的量子跃迁//传统Flink状态管理(基于RocksD...

在 Mac 上运行 Redis 的 Docker 容器

在Mac上运行Redis的Docker容器,你可以按以下步骤操作,非常简单高效:一、前提要求已安装DockerDesktopforMac可通过终端验证Docker是否可用:d...

从 0 到 1:使用 Nginx + Lua 打造高性能 Web 网关

在大规模分布式架构中,Web网关扮演着重要角色,负责请求转发、负载均衡、限流、认证等功能。而Nginx+Lua结合可以提供:o高性能:Nginx是目前最流行的高性能Web服务器o动...

外贸独立站缓存设置黑科技:用错Redis比没缓存更致命

上周帮一个杭州卖家排查网站崩溃问题,发现这老铁把Redis缓存设置成128MB还开着持久化,服务器内存直接炸得比春节红包还彻底——"你这哪是缓存啊,根本是DDoS攻击自己!"最近Clo...

Spring Boot3 整合 Redis,这些缓存注解你真的会用吗?

你在开发SpringBoot3项目时,有没有遇到过这样的困扰?随着项目功能不断增加,数据量逐渐庞大,接口响应速度变得越来越慢,用户体验直线下降。好不容易找到优化方向——引入Redis缓存...

MySQL处理并发访问和高负载的关键技术和策略

MySQL处理并发访问和高负载的关键技术和策略主要包括以下几个方面:一、硬件优化1.CPU:提升CPU处理能力可以明显改善并发处理性能。根据数据库负载,考虑使用更多的CPU核心。2.内存:增加内存可以...

druid解决高并发的数据库(druid多数据源配置 spring boot)

处理高并发的时候可以解决我们java一个核心问题java核心问题就是并发问题解决并发一个是redis一个是线程池的方式现在出来是个druid好像现在解决高并发的方式进行更换数据库的方式操作场景插入频繁...

高并发方案最全详解(8大常见方案)

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen睿哥。高并发是大型架构的核心,下面我重点来详解常见8大高并发方案@mikechen文章来源:mikechen.cc分...

MySQL如何处理并发访问和高负载?(mysql如何处理并发访问和高负载访问)

MySQL在处理并发访问和高负载方面,采取了一系列关键技术和策略,以确保数据库系统在面对不断增长的并发需求时维持高效和稳定的性能。以下是对这些技术和策略的详细阐述,旨在全面解析MySQL如何处理并发访...

Redis高可用集群详解(redis高可用方案以及优缺点)

Redis集群与哨兵架构对比Redis哨兵架构在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具监控master节点状态,如果master节点异常,则会做主从切换,将某一台sla...

MCP协议重大升级!Spring AI联合阿里Higress,性能提升300%

引言:一场颠覆AI通信的技术革命2025年3月,MCP(ModelContextProtocol)协议迎来里程碑式升级——StreamableHTTP正式取代HTTP+SSE成为默认传输层。这一...

阿里三面被挂,幸获内推,历经5轮终于拿到口碑offer

作者:Java程序猿阿谷来源:https://www.jianshu.com/p/1c8271f03aa5每一个互联网人心中都有一个大厂梦,百度、阿里巴巴、腾讯是很多互联网人梦寐以求的地方,而我也不例...

来瞧瞧阿里一面都面些什么(笔试+机试)

絮叨说实话,能有机会面一下阿里对我来说帮助确实有蛮多,至少让我知道了自己的不足在哪,都说面试造火箭,上班拧螺丝。但就算是如此,为了生存,你也只有不停的学习,唯有光头,才能更强。哈哈起因2月28日在Bo...

取消回复欢迎 发表评论: