百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

如何评估、预测系统的 QPS、QPS 预估

mhr18 2024-12-12 11:46 30 浏览 0 评论

#头条创作挑战赛#

如何评估、预测系统的 QPS、QPS 预估

容量评估按照3 - 5倍冗余计算

系统架构设计背景

当我们在设计一套系统的时候,我们要考虑好系统的架构设计、模块划分、技术方案选型、还有系统性能如能够承受的QPS。当我们线上系统能够支撑10W QPS的时候,我们要考虑100W QPS的架构优化、当我们系统能够支撑100W的时候,我们要思考1000W的架构优化和改进。同时,经验告诉我们,从10W到100W再到1000W一定不是理所当然的线性增长。

为啥要提前预估线上的最大QPS,因为这样我们才能做到白盒化,才能做到心中有数,才能提前有一定的方案,但是这个方案不一定要马上实施,作为技术人员,方案是一定需要有的,什么时候实施,如何时候是另外一回事。

本文就如何评估、预测我们系统的QPS做一些经验输出,不足之处望大佬们指正

评估步骤

评估总访问量

询问产品、运营;

评估平均访问量 QPS

一天86400秒,一般认为请求发生在白天,即4w秒。

总量除以总时间,一天算4w秒;

评估高峰 QPS

系统容量规划时,不能只考虑平均 QPS,而是要抗住高峰的 QPS

根据业务曲线图来

一般高峰 QPS 是平均 QPS 的 3-4 倍

评估系统、单机极限QPS

进行压测

适当冗余度

评估案例和方案

为啥要进行评估?因为不同的QPS,所带来的挑战是不同的,架构设计也是不一样的

如何评估系统的QPS

如何评估系统的QPS,指的是我们的系统支撑的业务场景需要满足的一个最大承压,对于一个新项目而言,一般来说,有这样几个方式:

  1. 产品和运营人员告诉你,我们这个系统上线,日活达到多少、同时在线达到多少、总用户将会有多少等等,这个是产品和运营对这个新项目的预估
  2. 这个是一个参考数据,不能全信也不可不信
  3. 凭借自身已有的经验算法和方法论进行预估,如一个视频聊天的产品的预估、如一个社交产品的预估、如一个微博系统的预估等等。
  4. 预估是有一套算法的,不是完全拍脑袋的。

社交、视频聊天的预估

对于视频聊天,我们可以这样预估QPS:

  1. 预估平均每个用户每天30次视频匹配、 15次视频聊天
  2. 预估每个用户每天30分钟视频时间,峰值为平均QPS的3-4倍,一天时间24h

不同日活的不同数据:

  • 10w*30分钟 * 4 / 24h = 0.83w QPS
  • 100W*30分钟 * 4 / 24h = 8.3w QPS

目前是预估30分钟,但是后面爆款后,这个时长可能变化很大,需要预留一定的流量,并且百万日活,并不是仅仅是100w,300w-400w内,都算百万日活,因此,在此基础上,还要再有3-4倍的量。

Feed 系统的预估

对于Feed这样的系统(如微博),我们可以预估一下,全量用户每天总共会发送1000W条Feed,那么Feed子系统一天就会产生1000W条消息,同时,我们预估每条Feed平均有10个用户会去查看,也就是要读取这条消息,因此读取消息就是1亿次。

这也是一天的总量,那么QPS如何算呢?

  • 写: 1000W / 24 h = 115.7 QPS
  • 读: 115.7 * 10 = 1157 QPS

按照上面的推论,峰值为平均QPS的3-4倍,那么实际的QPS应该是:

  • 写: 1000W / 24 h * 4 = 463 QPS
  • 读: 115.7 * 10 * 4 = 4630 QPS

同时为了应对高峰,和后续的增长,我们的QPS肯定要在现有基础上再进行一些扩充,一般还是3-4倍余量。因此,最终我们预估:

  • 写: 1000W / 24 h * 4 * 4 = 1852 QPS
  • 读: 115.7 * 10 * 4 * 4 = 18520 QPS

这里的3-4倍不是一定的,但是是根据实际经验的一个参考值,不同的业务会有不同的倍数。

如何预测系统的 QPS

在预测系统的QPS前,我们需要有一些已知的经验型数据,如日志QPS在6-10w、 RPC的QPS在 10W ,Redis的QPS是8-10w,MySQL大致6k-2W。以上是大体范围,不同机器不同配置有不同结果。

抛开其他的不谈,我们需要看看,我们一次请求调用,有多少次写日志、多少次读写底层资源、多少次RPC调用,然后取其中最低的个值,这是我们预测系统能够达到的最大值。

然而,我们压测的目的在于验证我们的猜测,看看我们实际系统和预测的有多少差别。这就是为什么有经验的人只要你告诉他你的系统架构设计,他就能预估你的系统最大能承受的QPS是多少的原因。

在实际应用中,我按照此种方式去预测和压测,发现压测的值和预测的值,相差比较小,当然压测数据一定是小于预测数据的。这就说明系统设计的还算ok。

QPS 预估(漏斗型)

QPS 漏斗预估模型,一个请求下来,会经过哪些模块,从上到下分别经过哪些服务模块,然后每一个层级的 QPS 的量级,按理来说会逐步减少的。

QPS 预估下每一层的预估,从服务、接口、redis 等详细的 qps 漏斗衰减

比如说进入活动页后查看商品详情然后下单。首先进入活动页,都会进入;然后会有部分用户查询商品详情;最后查看商品详情的这些用户又只有部分用户会下单。

相关推荐

C++开发必知的内存问题及常用的解决方法-经典文章

1.内存管理功能问题由于C++语言对内存有主动控制权,内存使用灵活和效率高,但代价是不小心使用就会导致以下内存错误:omemoryoverrun:写内存越界odoublefree:同一块内...

缓存用不好,系统崩得早!10条军规让你成为缓存高手

凌晨三点,我被电话惊醒:“苏工!首页崩了!”监控显示:缓存命中率0%,数据库QPS10万+,线程阻塞2000+。根本原因竟是同事没加缓存!不会用缓存的程序员,就像不会刹车的赛车手——...

彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏

作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...

Java中间件-Memcached(Java中间件大全)

一、知识结构及面试题目分析缓存技术的大规模使用是互联网架构区别于传统IT技术最大的地方,是整体高并发高性能架构设计中是重中之重的关键一笔,也是互联网公司比较偏好的面试题目。按照在软件系统中所处位置...

linux内存碎片防治技术(linux内存碎片整理)

推荐视频:90分钟了解Linux内存架构,numa的优势,slab的实现,vmalloc原理剖析Linux内核内存分配与回收Linuxkernel组织管理物理内存的方式是buddysystem(伙...

Redis主从架构详解(redis主从配置详细过程)

Redis主从架构搭建Redis主节点配置创建主节点目录(/opt/redis-master),复制redis.conf到该目录下,redis.conf配置项修改#后台启动daemonizeyes...

揭开CXL内存的神秘面纱(内存c1)

摘要:现代数据中心对内存容量的高需求促进了内存扩展和分解方面的多条创新线,其中一项获得极大关注的工作是基于ComputeeXpressLink(CXL)的内存扩展。为了更好地利用CXL,研究人员建...

一文彻底弄懂 TPS RPS QPS(tps cps)

以下是关于RPS、QPS、TPS的核心区别与关联的总结,结合实际场景和优化建议:一、核心定义与区别RPS:RequestsPerSecond每秒请求数客户端到服务器的完整请求数量Web服务...

用Redis的“集合”找出你和朋友的“共同关注”

你是不是在刷抖音、微博、小红书的时候,常常会看到这样的提示:“你和XXX有共同关注的博主/朋友”?或者当你关注了一个新的明星,系统会推荐“你的朋友YYY也关注了这位明星”?这个看似简单的功能背后,其实...

WOT2016彭哲夫:科班出身开发者对运维人员的期许

“运维与开发”是老生常谈的话题,前几天和一个运维人聊天,TA说一些公司运维岗位都不公开招聘了,这让众多运维人员情何以堪?是运维的岗位真的饱和了?是找到合适的运维人才难?还是有这样那样的因素?带着这些疑...

Java程序员最常用的20%技术总结(java程序员要掌握什么)

我听说编程语言,经常使用的是其中20%的技术。在Java这门语言中,这20%包括哪些内容?找到一份Java初级程序员的工作,有哪些是必须掌握的,有哪些是可以现学现卖的?一个完整的Javaweb项目,有...

秒杀系统实战(四)| 缓存与数据库双写一致性实战

前言微笑挖坑,努力填坑。————已经拥有黑眼圈,但还没学会小猪老师时间管理学的蛮三刀同学本文是秒杀系统的第四篇,我们来讨论秒杀系统中「缓存热点数据」的问题,进一步延伸到数据库和缓存的...

头条评论精灵翻牌子(头条评论精灵翻牌子怎么弄)

关于“头条评论精灵翻牌子”功能,这通常是指平台通过算法或运营手段,将用户的优质评论随机或定向推送到更显眼的位置(如信息流顶部、独立曝光位等),以提升互动率和用户参与感。以下是详细解析和建议:一、功能理...

15个程序员们都应该知道的大模型高级提示词指令模板和示例

作为程序员你如何写大模型指令?你写的指令是不是更专业呢?下面是15个程序员使用的专业的大模型指令,如果早知道可以能节省你很多时间。这些指令可以用在chatgpt,deepseek等大模型。1.一键...

MyBatis-Plus内置的主键生成策略有大坑,要注意!

昨天小伙伴使用Mybaits-Plus开发的项目线上(集群、K8S)出现了主键重复问题,其报错如下:Mybatis-Plus启动时会通过com.baomidou.mybatisplus.core.to...

取消回复欢迎 发表评论: