Spring-Data-Redis 连接泄漏,我 TM 人傻了
mhr18 2024-12-08 14:47 23 浏览 0 评论
本文基于 Spring Data Redis 2.4.9
最近线上又出事儿了,新上线了一个微服务系统,上线之后就开始报各种发往这个系统的请求超时,这是咋回事呢?
还是经典的通过 JFR 去定位,对于历史某些请求响应慢,我一般按照如下流程去看:
- 是否有 STW(Stop-the-world,参考我的另一篇文章:JVM相关 - SafePoint 与 Stop The World 全解):
- 是否有 GC 导致的长时间 STW
- 是否有其他原因导致进程所有线程进入 safepoint 导致 STW
- 是否 IO 花了太长时间,例如调用其他微服务,访问各种存储(硬盘,数据库,缓存等等)
- 是否在某些锁上面阻塞太长时间?
- 是否 CPU 占用过高,哪些线程导致的?
通过 JFR 发现是很多 HTTP 线程在一个锁上面阻塞了,这个锁是从 Redis 连接池获取连接的锁。我们的项目使用的 spring-data-redis,底层客户端使用 lettuce。为何会阻塞在这里呢?经过分析,我发现 spring-data-redis 存在连接泄漏的问题。
我们先来简单介绍下 Lettuce,简单来说 Lettuce 就是使用 Project Reactor + Netty 实现的 Redis 非阻塞响应式客户端。spring-data-redis 是针对 Redis 操作的统一封装。我们项目使用的是 spring-data-redis + Lettuce 的组合。
为了和大家尽量说明白问题的原因,这里先将 spring-data-redis + lettuce API 结构简单介绍下。
首先 lettuce 官方,是不推荐使用连接池的,但是官方没有说,这是什么情况下的决定。这里先放上结论:
- 如果你的项目中,使用的 spring-data-redis + lettuce,并且使用的都是 Redis 简单命令,没有使用 Redis 事务,Pipeline 等等,那么不使用连接池,是最好的(并且你没有关闭 Lettuce 连接共享,这个默认是开启的)。
- 如果你的项目中,大量使用了 Redis 事务,那么最好还是使用连接池
- 其实更准确地说,如果你使用了大量会触发 execute(SessionCallback) 的命令,最好使用连接池,如果你使用的都是 execute(RedisCallback) 的命令,就不太有必要使用连接池了。如果大量使用 Pipeline,最好还是使用连接池。
接下来介绍下 spring-data-redis 的 API 原理。在我们的项目中,主要使用 spring-data-redis 的两个核心 API,即同步的 RedisTemplate 和异步的 ReactiveRedisTemplate。我们这里主要以同步的 RedisTemplate 为例子,说明原理。ReactiveRedisTemplate 其实就是做了异步封装,Lettuce 本身就是异步客户端,所以 ReactiveRedisTemplate 其实实现更简单。
RedisTemplate 的一切 Redis 操作,最终都会被封装成两种操作对象,一是 RedisCallback<T>:
public interface RedisCallback<T> {
@Nullable
T doInRedis(RedisConnection connection) throws DataAccessException;
}
是一个 Functional Interface,入参是 RedisConnection,可以通过使用 RedisConnection 操作 Redis。可以是若干个 Redis 操作的集合。大部分 RedisTemplate 的简单 Redis 操作都是通过这个实现的。例如 Get 请求的源码实现就是:
//在 RedisCallback 的基础上增加统一反序列化的操作
abstract class ValueDeserializingRedisCallback implements RedisCallback<V> {
private Object key;
public ValueDeserializingRedisCallback(Object key) {
this.key = key;
}
public final V doInRedis(RedisConnection connection) {
byte[] result = inRedis(rawKey(key), connection);
return deserializeValue(result);
}
@Nullable
protected abstract byte[] inRedis(byte[] rawKey, RedisConnection connection);
}
//Redis Get 命令的实现
public V get(Object key) {
return execute(new ValueDeserializingRedisCallback(key) {
@Override
protected byte[] inRedis(byte[] rawKey, RedisConnection connection) {
//使用 connection 执行 get 命令
return connection.get(rawKey);
}
}, true);
}
另一种是SessionCallback<T>:
public interface SessionCallback<T> {
@Nullable
<K, V> T execute(RedisOperations<K, V> operations) throws DataAccessException;
}
SessionCallback也是一个 Functional Interface,方法体也是可以放若干个命令。顾名思义,即在这个方法中的所有命令,都是会共享同一个会话,即使用的 Redis 连接是同一个并且不能被共享的。一般如果使用 Redis 事务则会使用这个实现。
RedisTemplate 的 API 主要是以下这几个,所有的命令底层实现都是这几个 API:
- execute(RedisCallback<?> action) 和 executePipelined(final SessionCallback<?> session):执行一系列 Redis 命令,是所有方法的基础,里面使用的连接资源会在执行后自动释放。
- executePipelined(RedisCallback<?> action) 和 executePipelined(final SessionCallback<?> session):使用 PipeLine 执行一系列命令,连接资源会在执行后自动释放。
- executeWithStickyConnection(RedisCallback<T> callback):执行一系列 Redis 命令,连接资源不会自动释放,各种 Scan 命令就是通过这个方法实现的,因为 Scan 命令会返回一个 Cursor,这个 Cursor 需要保持连接(会话),同时交给用户决定什么时候关闭。
通过源码我们可以发现,RedisTemplate 的三个 API 在实际应用的时候,经常会发生互相嵌套递归的情况。
例如如下这种:
redisTemplate.executePipelined(new RedisCallback<Object>() {
@Override
public Object doInRedis(RedisConnection connection) throws DataAccessException {
orders.forEach(order -> {
connection.hashCommands().hSet(orderKey.getBytes(), order.getId().getBytes(), JSON.toJSONBytes(order));
});
return null;
}
});
和
redisTemplate.executePipelined(new RedisCallback<Object>() {
@Override
public Object doInRedis(RedisConnection connection) throws DataAccessException {
orders.forEach(order -> {
redisTemplate.opsForHash().put(orderKey, order.getId(), JSON.toJSONString(order));
});
return null;
}
});
是等价的。redisTemplate.opsForHash().put()其实调用的是 execute(RedisCallback) 方法,这种就是 executePipelined 与 execute(RedisCallback) 嵌套,由此我们可以组合出各种复杂的情况,但是里面使用的连接是怎么维护的呢?
其实这几个方法获取连接的时候,使用的都是:RedisConnectionUtils.doGetConnection 方法,去获取连接并执行命令。对于 Lettuce 客户端,获取的是一个 org.springframework.data.redis.connection.lettuce.LettuceConnection. 这个连接封装包含两个实际 Lettuce Redis 连接,分别是:
private final @Nullable StatefulConnection<byte[], byte[]> asyncSharedConn;
private @Nullable StatefulConnection<byte[], byte[]> asyncDedicatedConn;
- asyncSharedConn:可以为空,如果开启了连接共享,则不为空,默认是开启的;所有 LettuceConnection 共享的 Redis 连接,对于每个 LettuceConnection 实际上都是同一个连接;用于执行简单命令,因为 Netty 客户端与 Redis 的单处理线程特性,共享同一个连接也是很快的。如果没开启连接共享,则这个字段为空,使用 asyncDedicatedConn 执行命令。
- asyncDedicatedConn:私有连接,如果需要保持会话,执行事务,以及 Pipeline 命令,固定连接,则必须使用这个 asyncDedicatedConn 执行 Redis 命令。
我们通过一个简单例子来看一下执行流程,首先是一个简单命令:redisTemplate.opsForValue().get("test"),根据之前的源码分析,我们知道,底层其实就是 execute(RedisCallback),流程是:
可以看出,如果使用的是 RedisCallback,那么其实不需要绑定连接,不涉及事务。Redis 连接会在回调内返回。需要注意的是,如果是调用 executePipelined(RedisCallback),需要使用回调的连接进行 Redis 调用,不能直接使用 redisTemplate 调用,否则 pipeline 不生效:
Pipeline 生效:
List<Object> objects = redisTemplate.executePipelined(new RedisCallback<Object>() {
@Override
public Object doInRedis(RedisConnection connection) throws DataAccessException {
connection.get("test".getBytes());
connection.get("test2".getBytes());
return null;
}
});
Pipeline 不生效:
List<Object> objects = redisTemplate.executePipelined(new RedisCallback<Object>() {
@Override
public Object doInRedis(RedisConnection connection) throws DataAccessException {
redisTemplate.opsForValue().get("test");
redisTemplate.opsForValue().get("test2");
return null;
}
});
然后,我们尝试将其加入事务中,由于我们的目的不是真的测试事务,只是为了演示问题,所以,仅仅是用 SessionCallback 将 GET 命令包装起来:
redisTemplate.execute(new SessionCallback<Object>() {
@Override
public <K, V> Object execute(RedisOperations<K, V> operations) throws DataAccessException {
return operations.opsForValue().get("test");
}
});
这里最大的区别就是,外层获取连接的时候,这次是 bind = true 即将连接与当前线程绑定,用于保持会话连接。外层流程如下:
里面的 SessionCallback 其实就是 redisTemplate.opsForValue().get("test"),使用的是共享的连接,而不是独占的连接,因为我们这里还没开启事务(即执行 multi 命令),如果开启了事务使用的就是独占的连接,流程如下:
由于 SessionCallback 需要保持连接,所以流程有很大变化,首先需要绑定连接,其实就是获取连接放入 ThreadLocal 中。同时,针对 LettuceConnection 进行了封装,我们主要关注这个封装有一个引用计数的变量。每嵌套一次 execute 就会将这个计数 + 1,执行完之后,就会将这个计数 -1, 同时每次 execute 结束的时候都会检查这个引用计数,如果引用计数归零,就会调用 LettuceConnection.close()。
接下来再来看,如果是 executePipelined(SessionCallback) 会怎么样:
List<Object> objects = redisTemplate.executePipelined(new SessionCallback<Object>() {
@Override
public <K, V> Object execute(RedisOperations<K, V> operations) throws DataAccessException {
operations.opsForValue().get("test");
return null;
}
});
其实与第二个例子在流程上的主要区别在于,使用的连接不是共享连接,而是直接是独占的连接。
最后我们再来看一个例子,如果是在 execute(RedisCallback) 中执行基于 executeWithStickyConnection(RedisCallback<T> callback) 的命令会怎么样,各种 SCAN 就是基于 executeWithStickyConnection(RedisCallback<T> callback) 的,例如:
redisTemplate.execute(new SessionCallback<Object>() {
@Override
public <K, V> Object execute(RedisOperations<K, V> operations) throws DataAccessException {
Cursor<Map.Entry<Object, Object>> scan = operations.opsForHash().scan((K) "key".getBytes(), ScanOptions.scanOptions().match("*").count(1000).build());
//scan 最后一定要关闭,这里采用 try-with-resource
try (scan) {
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
});
这里 Session callback 的流程,如下图所示,因为处于 SessionCallback,所以 executeWithStickyConnection 会发现当前绑定了连接,于是标记 + 1,但是并不会标记 - 1,因为 executeWithStickyConnection 可以将资源暴露到外部,例如这里的 Cursor,需要外部手动关闭。
在这个例子中,会发生连接泄漏,首先执行:
redisTemplate.execute(new SessionCallback<Object>() {
@Override
public <K, V> Object execute(RedisOperations<K, V> operations) throws DataAccessException {
Cursor<Map.Entry<Object, Object>> scan = operations.opsForHash().scan((K) "key".getBytes(), ScanOptions.scanOptions().match("*").count(1000).build());
//scan 最后一定要关闭,这里采用 try-with-resource
try (scan) {
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
});
这样呢,LettuceConnection 会和当前线程绑定,并且在结束时,引用计数不为零,而是 1。并且 cursor 关闭时,会调用 LettuceConnection 的 close。但是 LettuceConnection 的 close 的实现,其实只是标记状态,并且把独占的连接 asyncDedicatedConn 关闭,由于当前没有使用到独占的连接,所以为空,不需要关闭;如下面源码所示:
LettuceConnection:
@Override
public void close() throws DataAccessException {
super.close();
if (isClosed) {
return;
}
isClosed = true;
if (asyncDedicatedConn != null) {
try {
if (customizedDatabaseIndex()) {
potentiallySelectDatabase(defaultDbIndex);
}
connectionProvider.release(asyncDedicatedConn);
} catch (RuntimeException ex) {
throw convertLettuceAccessException(ex);
}
}
if (subscription != null) {
if (subscription.isAlive()) {
subscription.doClose();
}
subscription = null;
}
this.dbIndex = defaultDbIndex;
}
之后我们继续执行一个 Pipeline 命令:
List<Object> objects = redisTemplate.executePipelined(new RedisCallback<Object>() {
@Override
public Object doInRedis(RedisConnection connection) throws DataAccessException {
connection.get("test".getBytes());
redisTemplate.opsForValue().get("test");
return null;
}
});
这时候由于连接已经绑定到当前线程,同时同上上一节分析我们知道第一步解开释放这个绑定,但是调用了 LettuceConnection 的 close。执行这个代码,会创建一个独占连接,并且,由于计数不能归零,导致连接一直与当前线程绑定,这样,这个独占连接一直不会关闭(如果有连接池的话,就是一直不返回连接池)
即使后面我们手动关闭这个链接,但是根据源码,由于状态 isClosed 已经是 true,还是不能将独占链接关闭。这样,就会造成连接泄漏。
针对这个 Bug,我已经向 spring-data-redis 一个 Issue:Lettuce Connection Leak while using execute(SessionCallback) and executeWithStickyConnection in same thread by random turn
- 尽量避免使用 SessionCallback,尽量仅在需要使用 Redis 事务的时候,使用 SessionCallback。
- 使用 SessionCallback 的函数单独封装,将事务相关的命令单独放在一起,并且外层尽量避免再继续套 RedisTemplate 的 execute 相关函数。
相关推荐
- Dubai's AI Boom Lures Global Tech as Emirate Reinvents Itself as Middle East's Silicon Gateway
-
AI-generatedimageAsianFin--Dubaiisrapidlytransformingitselffromadesertoilhubintoaglob...
- OpenAI Releases o3-pro, Cuts o3 Prices by 80% as Deal with Google Cloud Reported to Make for Compute Needs
-
TMTPOST--OpenAIisescalatingthepricewarinlargelanguagemodel(LLM)whileseekingpartnershi...
- 黄仁勋说AI Agent才是未来!但究竟有些啥影响?
-
,抓住风口(iOS用户请用电脑端打开小程序)本期要点:详解2025年大热点你好,我是王煜全,这里是王煜全要闻评论。最近,有个词被各个科技大佬反复提及——AIAgent,智能体。黄仁勋在CES展的发布...
- 商城微服务项目组件搭建(五)——Kafka、Tomcat等安装部署
-
1、本文属于mini商城系列文档的第0章,由于篇幅原因,这篇文章拆成了6部分,本文属于第5部分2、mini商城项目详细文档及代码见CSDN:https://blog.csdn.net/Eclipse_...
- Python+Appium环境搭建与自动化教程
-
以下是保姆级教程,手把手教你搭建Python+Appium环境并实现简单的APP自动化测试:一、环境搭建(Windows系统)1.安装Python访问Python官网下载最新版(建议...
- 零配置入门:用VSCode写Java代码的正确姿
-
一、环境准备:安装JDK,让电脑“听懂”Java目标:安装Java开发工具包(JDK),配置环境变量下载JDKJava程序需要JDK(JavaDevelopmentKit)才能运行和编译。以下是两...
- Mycat的搭建以及配置与启动(mycat2)
-
1、首先开启服务器相关端口firewall-cmd--permanent--add-port=9066/tcpfirewall-cmd--permanent--add-port=80...
- kubernetes 部署mysql应用(k8s mysql部署)
-
这边仅用于测试环境,一般生产环境mysql不建议使用容器部署。这里假设安装mysql版本为mysql8.0.33一、创建MySQL配置(ConfigMap)#mysql-config.yaml...
- Spring Data Jpa 介绍和详细入门案例搭建
-
1.SpringDataJPA的概念在介绍SpringDataJPA的时候,我们首先认识下Hibernate。Hibernate是数据访问解决技术的绝对霸主,使用O/R映射(Object-Re...
- 量子点格棋上线!“天衍”邀您执子入局
-
你是否能在策略上战胜量子智能?这不仅是一场博弈更是一次量子智力的较量——量子点格棋正式上线!试试你能否赢下这场量子智局!游戏玩法详解一笔一画间的策略博弈游戏目标:封闭格子、争夺领地点格棋的基本目标是利...
- 美国将与阿联酋合作建立海外最大的人工智能数据中心
-
当地时间5月15日,美国白宫宣布与阿联酋合作建立人工智能数据中心园区,据称这是美国以外最大的人工智能园区。阿布扎比政府支持的阿联酋公司G42及多家美国公司将在阿布扎比合作建造容量为5GW的数据中心,占...
- 盘后股价大涨近8%!甲骨文的业绩及指引超预期?
-
近期,美股的AI概念股迎来了一波上升行情,微软(MSFT.US)频创新高,英伟达(NVDA.US)、台积电(TSM.US)、博通(AVGO.US)、甲骨文(ORCL.US)等多股亦出现显著上涨。而从基...
- 甲骨文预计新财年云基础设施营收将涨超70%,盘后一度涨8% | 财报见闻
-
甲骨文(Oracle)周三盘后公布财报显示,该公司第四财季业绩超预期,虽然云基建略微逊于预期,但管理层预计2026财年云基础设施营收预计将增长超过70%,同时资本支出继上年猛增三倍后,新财年将继续增至...
- Springboot数据访问(整合MongoDB)
-
SpringBoot整合MongoDB基本概念MongoDB与我们之前熟知的关系型数据库(MySQL、Oracle)不同,MongoDB是一个文档数据库,它具有所需的可伸缩性和灵活性,以及所需的查询和...
- Linux环境下,Jmeter压力测试的搭建及报错解决方法
-
概述 Jmeter最早是为了测试Tomcat的前身JServ的执行效率而诞生的。到目前为止,它的最新版本是5.3,其测试能力也不再仅仅只局限于对于Web服务器的测试,而是涵盖了数据库、JM...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Dubai's AI Boom Lures Global Tech as Emirate Reinvents Itself as Middle East's Silicon Gateway
- OpenAI Releases o3-pro, Cuts o3 Prices by 80% as Deal with Google Cloud Reported to Make for Compute Needs
- 黄仁勋说AI Agent才是未来!但究竟有些啥影响?
- 商城微服务项目组件搭建(五)——Kafka、Tomcat等安装部署
- Python+Appium环境搭建与自动化教程
- 零配置入门:用VSCode写Java代码的正确姿
- Mycat的搭建以及配置与启动(mycat2)
- kubernetes 部署mysql应用(k8s mysql部署)
- Spring Data Jpa 介绍和详细入门案例搭建
- 量子点格棋上线!“天衍”邀您执子入局
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle 空为0 (51)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)