百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

十亿级流量下,我与Redis时延小突刺的战斗史

mhr18 2024-11-28 08:37 18 浏览 0 评论

一、背景

某一日收到上游调用方的反馈,提供的某一个Dubbo接口,每天在固定的时间点被短时间熔断,抛出的异常信息为提供方dubbo线程池被耗尽。 当前dubbo接口日请求量18亿次,报错请求94W/天,至此开始了优化之旅。

二、快速应急

2.1 快速定位

首先进行常规的系统信息监控(机器、JVM内存、GC、线程),发现虽稍有突刺,但都在合理范围内,且跟报错时间点对不上,先暂时忽略。

其次进行流量分析,发现每天固定时间点会有流量突增的情况,流量突增的点跟报错的时间点也吻合,初步判断为短时大流量导致。

流量趋势

被降级量

接口99线

三、寻找性能瓶颈点

3.1 接口流程分析

3.1.1 流程图

3.1.2 流程分析

收到请求后调用下游接口,使用hystrix熔断器,熔断时间为500MS

根据下游接口返回的数据,进行详情数据的封装,第一步先到本地缓存中获取,如果本地缓存没有,则从Redis进行回源,Redis中无则直接返回,异步线程从数据库进行回源。

如果第一步调用下游接口异常,则进行数据兜底,兜底流程为先到本地缓存中获取,如果本地缓存没有,则从Redis进行回源,Redis中无则直接返回,异步线程从数据库进行回源。

3.2 性能瓶颈点排查

3.2.1 下游接口服务耗时比较长

调用链显示,虽然下游接口的P99线在峰值流量时存在突刺,超出1S,但因为熔断超时的设置(熔断时间500MS,coreSize&masSize=50,下游接口平均耗时10MS以下),判断下游接口不是问题的关键点,为进一步排除干扰,在下游服务存在突刺时能快速失败,调整熔断时间为100MS,dubbo超时时间100MS。

3.2.2 获取详情本地缓存无数据,Redis回源

借助调用链平台,第一步分析Redis请求流量,以此来判断本地缓存的命中率,发现Redis的流量是接口流量的2倍,从设计上来说不应该出现这个现象。开始代码Review,发现在有一处逻辑出现了问题。

没有从本地缓存读取,而是直接从Redis中获取了数据,Redis最大响应时间也确实发现了不合理的突刺,继续分析发现Redis响应时间和Dubbo99线突刺情况基本一致,感觉此时已经找到了问题的原因,心中暗喜。

Redis请求流量

服务接口请求流量

Dubbo99线

Redis最大响应时间

3.2.3 获取兜底数据本地缓存无数据,Redis回源

正常

3.2.4 记录请求结果入Redis

因为当前Redis做了资源隔离,且未在DB后台查询到慢日志,此时分析导致Redis变慢的原因有很多,不过其他的都被主观忽略了,注意力都在请求Redis流量翻倍的问题上了,故优先解决3.2.2中的问题。

四、解决方案

4.1 3.3.2中定位的问题上线

上线前Redis请求量

上线后Redis请求量

上线后Redis流量翻倍问题得到解决,Redis最大响应时间突刺有所缓解,但依旧没能彻底解决,说明大流量查询不是最根本的原因。

redis最大响应时间(上线前)

redis最大响应时间(上线后)

4.2 Redis扩容

在Redis异常流量问题解决后,问题并未得到彻底解决,此时能做的就是静下心来,仔细去梳理导致Redis慢的原因,思路主要从以下三个方面:

  • 出现了慢查询
  • Redis服务出现性能瓶颈
  • 客户端配置不合理

基于以上思路,一个个地进行排查;查询Redis慢查询日志,未发现慢查询。

借用调用链平台详细分析慢的Redis命令,没有了大流量导致的慢查询的干扰,问题定位流程很快,大量的耗时请求在setex方法上,偶尔出现查询的慢请求也都是在setex方法之后,根据Redis单线程的特性判断setex是Redis99线突刺的元凶。找到具体语句,定位到具体业务后,首先申请扩容Redis,由6个master扩到8个master。

Redis扩容前

Redis扩容后

从结果上看,扩容基本上没有效果,说明redis服务本身不是性能瓶颈点,此时剩下的一个就是客户端相关配置了。

4.3 客户端参数优化

4.3.1 连接池优化

Redis扩容没有效果,针对客户端可能出现的问题,此时怀疑地点有两个方向。

第一个是客户端在处理Redis集群模式时,对连接的管理上存在BUG,第二个是连接池参数设置不合理,此时源码分析和连接池参数调整同步进行。

4.3.1.1 判断客户端连接管理上是否有BUG

在分析完,客户端处理连接池的源码后,没有问题,跟预想一致,按照槽位缓存连接池,第一个假设被排除,源码如下。

1、setEx

  public String setex(final byte[] key, final int seconds, final byte[] value) {

    return new JedisClusterCommand<String>(connectionHandler, maxAttempts) {

      @Override

      public String execute(Jedis connection) {

        return connection.setex(key, seconds, value);

      }

    }.runBinary(key);

  }

 

2、runBinary

  public T runBinary(byte[] key) {

    if (key == null) {

      throw new JedisClusterException("No way to dispatch this command to Redis Cluster.");

    }

 

    return runWithRetries(key, this.maxAttempts, false, false);

  }

3、runWithRetries

  private T runWithRetries(byte[] key, int attempts, boolean tryRandomNode, boolean asking) {

    if (attempts <= 0) {

      throw new JedisClusterMaxRedirectionsException("Too many Cluster redirections?");

    }

 

    Jedis connection = null;

    try {

 

      if (asking) {

        // TODO: Pipeline asking with the original command to make it

        // faster....

        connection = askConnection.get();

        connection.asking();

 

        // if asking success, reset asking flag

        asking = false;

      } else {

        if (tryRandomNode) {

          connection = connectionHandler.getConnection();

        } else {

          connection = connectionHandler.getConnectionFromSlot(JedisClusterCRC16.getSlot(key));

        }

      }

 

      return execute(connection);

 

    }

 

4、getConnectionFromSlot

  public Jedis getConnectionFromSlot(int slot) {

    JedisPool connectionPool = cache.getSlotPool(slot);

    if (connectionPool != null) {

      // It can't guaranteed to get valid connection because of node

      // assignment

      return connectionPool.getResource();

    } else {

      renewSlotCache(); //It's abnormal situation for cluster mode, that we have just nothing for slot, try to rediscover state

      connectionPool = cache.getSlotPool(slot);

      if (connectionPool != null) {

        return connectionPool.getResource();

      } else {

        //no choice, fallback to new connection to random node

        return getConnection();

      }

    }

  }

4.3.1.2 分析连接池参数

通过跟中间件团队沟通,以及参考commons-pool2官方文档修改如下;

参数调整后,1S以上的请求量得到减少,但还是存在,上游反馈降级量由每天90万左右降到每天6W个(关于maxWaitMillis设置为200MS后为什么还会有超过200MS的请求,下文有解释)。

参数优化后Reds最大响应时间

参数优化后接口报错量

4.3.2 持续优化

优化不能停止,如何把Redis的所有写入请求降低到200MS以内,此时的优化思路还是调整客户端配置参数,分析Jedis获取连接相关源码;

Jedis获取连接源码

public T borrowObject(final long borrowMaxWaitMillis) throws Exception {

    assertOpen();

 

    final AbandonedConfig ac = this.abandonedConfig;

    if (ac != null && ac.getRemoveAbandonedOnBorrow() &&

            (getNumIdle() < 2) &&

            (getNumActive() > getMaxTotal() - 3) ) {

        removeAbandoned(ac);

    }

 

    PooledObject<T> p = null;

 

    // Get local copy of current config so it is consistent for entire

    // method execution

    final boolean blockWhenExhausted = getBlockWhenExhausted();

 

    boolean create;

    final long waitTime = System.currentTimeMillis();

 

    while (p == null) {

        create = false;

        p = idleObjects.pollFirst();

        if (p == null) {

            p = create();

            if (p != null) {

                create = true;

            }

        }

        if (blockWhenExhausted) {

            if (p == null) {

                if (borrowMaxWaitMillis < 0) {

                    p = idleObjects.takeFirst();

                } else {

                    p = idleObjects.pollFirst(borrowMaxWaitMillis,

                            TimeUnit.MILLISECONDS);

                }

            }

            if (p == null) {

                throw new NoSuchElementException(

                        "Timeout waiting for idle object");

            }

        } else {

            if (p == null) {

                throw new NoSuchElementException("Pool exhausted");

            }

        }

        if (!p.allocate()) {

            p = null;

        }

 

        if (p != null) {

            try {

                factory.activateObject(p);

            } catch (final Exception e) {

                try {

                    destroy(p);

                } catch (final Exception e1) {

                    // Ignore - activation failure is more important

                }

                p = null;

                if (create) {

                    final NoSuchElementException nsee = new NoSuchElementException(

                            "Unable to activate object");

                    nsee.initCause(e);

                    throw nsee;

                }

            }

            if (p != null && (getTestOnBorrow() || create && getTestOnCreate())) {

                boolean validate = false;

                Throwable validationThrowable = null;

                try {

                    validate = factory.validateObject(p);

                } catch (final Throwable t) {

                    PoolUtils.checkRethrow(t);

                    validationThrowable = t;

                }

                if (!validate) {

                    try {

                        destroy(p);

                        destroyedByBorrowValidationCount.incrementAndGet();

                    } catch (final Exception e) {

                        // Ignore - validation failure is more important

                    }

                    p = null;

                    if (create) {

                        final NoSuchElementException nsee = new NoSuchElementException(

                                "Unable to validate object");

                        nsee.initCause(validationThrowable);

                        throw nsee;

                    }

                }

            }

        }

    }

 

    updateStatsBorrow(p, System.currentTimeMillis() - waitTime);

 

    return p.getObject();

}

获取连接的大致流程如下:

是否有空闲连接,有空闲连接就直接返回,没有就创建;

创建时如果超出最大连接数,则判断是否有其他线程在创建连接,如果没则直接返回,如果有则等待maxWaitMis时间(其他线程可能创建失败),如果未超出最大连接,则执行创建连接操作(此时获取连接等待时间可能会大于maxWaitMs)。

如果创建不成功,则判断是否是阻塞获取连接,如果不是则直接抛出异常,连接池不够用,如果是则判断maxWaitMillis是否小于0,如果小于0则阻塞等待,如果大于0则阻塞等待maxWaitMillis。

后续就是根据参数来判断是否需要做连接check等。

根据以上流程分析,maxWaitMills目前设置的为200,以上流程加起来最大阻塞时间为400MS,大部分情况为200MS,不应该出现超出400MS的突刺。

此时问题可能出现在创建连接上,因为创建连接比较耗时,且创建时间不定,重点分析是否有这个场景,通过DB后台监控Redis连接情况。

DB后台监控Redis服务连接

分析上图发现,确实在几个时间点(9:00,12:00,19:00...),redis连接数存在上涨情况,跟Redis突刺时间基本吻合。 感觉(之前的各种尝试后,已经不敢用确定了)问题到此定位清晰(在突增流量过来时,连接池可用连接满足不了需求,会创建连接,造成请求等待)。

此时的想法是在服务启动时就进行连接池的创建,尽量减少新连接的创建,修改连接池参数 v ivo.cache.depend.common.poolConfig.minIdle,结果竟然无效???

啥都不说了,开始撸源码,jedis底层使用的是commons-poll2来管理连接的,查看项目中使用的commons-pool2-2.6.2.jar部分源码;

CommonPool2源码

public GenericObjectPool(final PooledObjectFactory<T> factory,

        final GenericObjectPoolConfig<T> config) {

 

    super(config, ONAME_BASE, config.getJmxNamePrefix());

 

    if (factory == null) {

        jmxUnregister(); // tidy up

        throw new IllegalArgumentException("factory may not be null");

    }

    this.factory = factory;

 

    idleObjects = new LinkedBlockingDeque<>(config.getFairness());

 

    setConfig(config);

}

竟然发现没有初始化连接的地方,开始咨询中间件团队,中间件团队给出的源码(commons-pool2-2.4.2.jar)如下,方法执行后多了一次startEvictor方法的调用?

CommonPool2源码

1、初始化连接池
public GenericObjectPool(PooledObjectFactory<T> factory,
            GenericObjectPoolConfig config) {
super(config, ONAME_BASE, config.getJmxNamePrefix());
if (factory == null) {
            jmxUnregister(); // tidy up
throw new IllegalArgumentException("factory may not be null");
        }
this.factory = factory;
        idleObjects = new LinkedBlockingDeque<PooledObject<T>>(config.getFairness());
        setConfig(config);
        startEvictor(getTimeBetweenEvictionRunsMillis());
    }

为啥不一样???开始检查Jar包,版本不一样,中间件给出的版本是在V2.4.2,项目实际使用的是V2.6.2,分析startEvictor有一步逻辑正是处理连接池预热逻辑。

Jedis连接池预热

1、final void startEvictor(long delay) {

        synchronized (evictionLock) {

            if (null != evictor) {

                EvictionTimer.cancel(evictor);

                evictor = null;

                evictionIterator = null;

            }

            if (delay > 0) {

                evictor = new Evictor();

                EvictionTimer.schedule(evictor, delay, delay);

            }

        }

    }

2、class Evictor extends TimerTask {

       /**

         * Run pool maintenance.  Evict objects qualifying for eviction and then

         * ensure that the minimum number of idle instances are available.

         * Since the Timer that invokes Evictors is shared for all Pools but

         * pools may exist in different class loaders, the Evictor ensures that

         * any actions taken are under the class loader of the factory

         * associated with the pool.

         */

        @Override

        public void run() {

            ClassLoader savedClassLoader =

                    Thread.currentThread().getContextClassLoader();

            try {

                if (factoryClassLoader != null) {

                    // Set the class loader for the factory

                    ClassLoader cl = factoryClassLoader.get();

                    if (cl == null) {

                        // The pool has been dereferenced and the class loader

                        // GC'd. Cancel this timer so the pool can be GC'd as

                        // well.

                        cancel();

                        return;

                    }

                    Thread.currentThread().setContextClassLoader(cl);

                }

 

                // Evict from the pool

                try {

                    evict();

                } catch(Exception e) {

                    swallowException(e);

                } catch(OutOfMemoryError oome) {

                    // Log problem but give evictor thread a chance to continue

                    // in case error is recoverable

                    oome.printStackTrace(System.err);

                }

                // Re-create idle instances.

                try {

                    ensureMinIdle();

                } catch (Exception e) {

                    swallowException(e);

                }

            } finally {

                // Restore the previous CCL

                Thread.currentThread().setContextClassLoader(savedClassLoader);

            }

        }

    }

3、 void ensureMinIdle() throws Exception {

        ensureIdle(getMinIdle(), true);

    }

4、 private void ensureIdle(int idleCount, boolean always) throws Exception {

        if (idleCount < 1 || isClosed() || (!always && !idleObjects.hasTakeWaiters())) {

            return;

        }

 

        while (idleObjects.size() < idleCount) {

            PooledObject<T> p = create();

            if (p == null) {

                // Can't create objects, no reason to think another call to

                // create will work. Give up.

                break;

            }

            if (getLifo()) {

                idleObjects.addFirst(p);

            } else {

                idleObjects.addLast(p);

            }

        }

        if (isClosed()) {

            // Pool closed while object was being added to idle objects.

            // Make sure the returned object is destroyed rather than left

            // in the idle object pool (which would effectively be a leak)

            clear();

        }

    }

修改Jar版本,配置中心增加

vivo.cache.depend.common.poolConfig.timeBetweenEvictionRunsMillis (检查一次连接池中空闲的连接,把空闲时间超过minEvictableIdleTimeMillis毫秒的连接断开,直到连接池中的连接数到minIdle为止)。

vivo.cache.depend.common.poolConfig.minEvictableIdleTimeMillis (连接池中连接可空闲的时间,毫秒)两个参数,重启服务后,连接池正常预热,最终从Redis层面上解决问题。

优化结果如下,性能问题基本得到解决;

Redis响应时间(优化前)

Redis响应时间(优化后)

接口99线(优化前)

接口99线(优化后)

五、总结

出现线上问题时,首先要考虑的还是快速恢复线上业务,将业务的影响度降到最低,所以针对线上的业务,要提前做好限流、熔断、降级等策略,在线上出现问题时能快速找到恢复方案。 对公司各监控平台的熟练使用程度,决定了定位问题的速度,每个开发都要把熟练使用监控平台(机器、服务、接口、DB等)作为一个基本能力。

Redis出现响应慢时,可以优先从Redis集群服务端(机器负载、服务是否有慢查询)、业务代码(是否有BUG)、客户端(连接池配置是否合理)三个方面去排查,基本上能排查出大部分Redis慢响应问题。

Redis连接池在系统冷启动时,对连接池的预热,不同commons-pool2的版本,冷启动的策略也不同,但都需要配置minEvictableIdleTimeMillis参数才会生效,可以看下common-pool2官方文档,对常用参数都做到心中有数,在问题出现时能快速定位。

连接池默认参数在解决大流量的业务上稍显乏力,需要针对大流量场景进行调优处理,如果业务上流量不是很大直接使用默认参数即可。

具体问题要具体分析,不能解决问题的时候要变通思路,通过各种方法去尝试解决问题。

相关推荐

如何检查 Linux 服务器是物理服务器还是虚拟服务器?

在企业级运维、故障排查和性能调优过程中,准确了解服务器的运行环境至关重要。无论是物理机还是虚拟机,都存在各自的优势与限制。在很多场景下,尤其是当你继承一台服务器而不清楚底层硬件细节时,如何快速辨识它是...

第四节 Windows 系统 Docker 安装全指南

一、Docker在Windows上的运行原理(一)架构限制说明Docker本质上依赖Linux内核特性(如Namespaces、Cgroups等),因此在Windows系统上无法直...

C++ std:shared_ptr自定义allocator引入内存池

当C++项目里做了大量的动态内存分配与释放,可能会导致内存碎片,使系统性能降低。当动态内存分配的开销变得不容忽视时,一种解决办法是一次从操作系统分配一块大的静态内存作为内存池进行手动管理,堆对象内存分...

Activiti 8.0.0 发布,业务流程管理与工作流系统

Activiti8.0.0现已发布。Activiti是一个业务流程管理(BPM)和工作流系统,适用于开发人员和系统管理员。其核心是超快速、稳定的BPMN2流程引擎。Activiti可以...

MyBatis动态SQL的5种高级玩法,90%的人只用过3种

MyBatis动态SQL在日常开发中频繁使用,但大多数开发者仅掌握基础标签。本文将介绍五种高阶技巧,助你解锁更灵活的SQL控制能力。一、智能修剪(Trim标签)应用场景:动态处理字段更新,替代<...

Springboot数据访问(整合Mybatis Plus)

Springboot整合MybatisPlus1、创建数据表2、引入maven依赖mybatis-plus-boot-starter主要引入这个依赖,其他相关的依赖在这里就不写了。3、项目结构目录h...

盘点金州勇士在奥克兰13年的13大球星 满满的全是...

见证了两个月前勇士与猛龙那个史诗般的系列赛后,甲骨文球馆正式成为了历史。那个大大的红色标志被一个字母一个字母地移除,在周四,一切都成为了过去式。然而这座,别名为“Roaracle”(译注:Roar怒吼...

Mybatis入门看这一篇就够了(mybatis快速入门)

什么是MyBatisMyBatis本是apache的一个开源项目iBatis,2010年这个项目由apachesoftwarefoundation迁移到了googlecode,并且改名为M...

Springboot数据访问(整合druid数据源)

Springboot整合druid数据源基本概念SpringBoot默认的数据源是:2.0之前:org.apache.tomcat.jdbc.pool.DataSource2.0及之后:com.z...

Linux 中的 &quot;/etc/profile.d&quot; 目录有什么作用 ?

什么是/etc/profile.d/目录?/etc/profile.d/目录是Linux系统不可或缺的一部分保留配置脚本。它与/etc/profile文件相关联,这是一个启动脚本,该脚...

企业数据库安全管理规范(企业数据库安全管理规范最新版)

1.目的为规范数据库系统安全使用活动,降低因使用不当而带来的安全风险,保障数据库系统及相关应用系统的安全,特制定本数据库安全管理规范。2.适用范围本规范中所定义的数据管理内容,特指存放在信息系统数据库...

Oracle 伪列!这些隐藏用法你都知道吗?

在Oracle数据库中,有几位特殊的“成员”——伪列,它们虽然不是表中真实存在的物理列,但却能在数据查询、处理过程中发挥出意想不到的强大作用。今天给大家分享Oracle伪列的使用技巧,无论...

Oracle 高效处理数据的隐藏神器:临时表妙用

各位数据库搬砖人,在Oracle的代码世界里闯荡,处理复杂业务时,是不是总被数据“搅得头大”?今天给大家安利一个超实用的隐藏神器——临时表!当你需要临时存储中间计算结果,又不想污染正式数据表...

Oracle 数据库查询:多表查询(oracle多表关联查询)

一、多表查询基础1.JOIN操作-INNERJOIN:返回两个表中满足连接条件的匹配行,不保留未匹配数据。SELECTa.emp_id,b.dept_nameFROMempl...

一文掌握怎么利用Shell+Python实现多数据源的异地备份程序

简介:在信息化时代,数据安全和业务连续性已成为企业和个人用户关注的焦点。无论是网站数据、数据库、日志文件,还是用户上传的文档、图片等,数据一旦丢失,损失难以估量。尤其是当数据分布在多个不同的目录、服务...

取消回复欢迎 发表评论: