百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

分布式高并发服务三种常用限流方案简介

mhr18 2024-11-27 11:59 16 浏览 0 评论

服务限流场景

在高并发大流量系统中,由于并发大造成服务资源不足,负载过高,进而引发致一系列问题,这里的流量一般都是突发性的,由于系统准备不足,很难短期扩容来应对 ,进行限流是最常用的手段,所以说限流也是服务稳定性治理重要的手段。

限流可能发生在多个层面:

  1. 用户网络层:突发的流量场景如热点事件流量(秒杀事件、热门抢购,微博热搜),恶意刷流,竞对爬虫等。

  2. 内部应用层:上游服务的异常调用,脚本异常请求,失败重试策略造成流量突发。

实现限流方案

常用的限流方法主要有三种:计数器算法,漏斗桶算法,令牌桶算法

1.计算器限流

1.1 实现原理

设计限流条件,如根据用户id/商户id/IP/UUID+请求url作为限流对象,对限流对象的每次流量访问进行全局计数,设置限流阈值(1000次/秒,10000/分钟),如果统计时间窗口期内达到阈值就进行限流。

对单机限流来说,使用全局内存计数即可,但对分布式系统需要有一个公共存储计数,redis是最佳存储方案,且redis的incr能保障原子性操作。

1.2 代码实现

//@param key string object for rate limit such as uid/ip+url//@param fillInterval time.Duration such as 1*time.Second//@param limitNum max int64 allowed number per fillInterval//@return whether reach rate limit, false means reach.func fixedWindowRateLimit(key string, fillInterval time.Duration, limitNum int64) bool { //current tick time window tick := int64(time.Now.Unix / int64(fillInterval.Seconds)) currentKey := fmt.Sprintf("%s_%d_%d_%d", key, fillInterval, limitNum, tick)
startCount := 0 _, err := client.SetNX(currentKey, startCount, fillInterval).Result if err != nil { panic(err) } //number in current time window quantum, err := client.Incr(currentKey).Result if err != nil { panic(err) } if quantum > limitNum { return false } return true}

完整代码参见:

https://github.com/skyhackvip/ratelimit/blob/master/fixedwindow.go

测试代码:

func test1 {for i := 0; i < 10; i++ {go func { rs := fixedWindowRateLimit("test1", 1*time.Second, 5) fmt.Println("result is:", rs) }  } }

测试执行结果:

根据执行结果可以看到,1秒中有10个请求,只有5个通过,另5个被限流返回false。

这个代码实现的是固定时间窗口,有一个问题,当流量在上一个时间窗口下半段和下一个时间窗口上半段集中爆发,那么这两段组成的时间窗口内流量是会超过limit限制的。

测试代码如下,拉长时间窗口为1分钟,1分钟限流5个,前30s没流量,之后每10s一个请求:

func test2 { fillInteval := 1 * time.Minute var limitNum int64 = 5 waitTime := 30 fmt.Printf("time range from 0 to %d\n", waitTime) time.Sleep(time.Duration(waitTime) * time.Second) for i := 0; i < 10; i++ { fmt.Printf("time range from %d to %d\n", i*10+waitTime, (i+1)*10+waitTime) rs := fixedWindowRateLimit("test2", fillInteval, limitNum) fmt.Println("result is:", rs) time.Sleep(10 * time.Second) }}

根据执行结果可以看到,0-60s总共4个true满足1分钟窗口5个,60-120总共5个true,1个false满足限流,但30-90这1分钟的时间窗总共6个true,超过5个限制。

1.3 方案改进:使用滑动窗口

//segmentNum split inteval time into smaller segmentsfunc slidingWindowRatelimit(key string, fillInteval time.Duration, segmentNum int64, limitNum int64) bool { segmentInteval := fillInteval.Seconds / float64(segmentNum) tick := float64(time.Now.Unix) / segmentInteval currentKey := fmt.Sprintf("%s_%d_%d_%d_%f", key, fillInteval, segmentNum, limitNum, tick)
startCount := 0 _, err := client.SetNX(currentKey, startCount, fillInteval).Result if err != nil { panic(err) } quantum, err := client.Incr(currentKey).Result if err != nil { panic(err) } //add in the number of the previous time for tickStart := segmentInteval; tickStart < fillInteval.Seconds; tickStart += segmentInteval { tick = tick - 1 preKey := fmt.Sprintf("%s_%d_%d_%d_%f", key, fillInteval, segmentNum, limitNum, tick) val, err := client.Get(preKey).Result if err != nil { val = "0" } num, err := strconv.ParseInt(val, 0, 64) quantum = quantum + num if quantum > limitNum { client.Decr(currentKey).Result return false } } return true}

完整代码参见:

https://github.com/skyhackvip/ratelimit/blob/master/slidingwindow.go

滑动窗口增加一个参数segmentNum,表示把固定窗口再分成几段,如上图的0-10 ... 50-60,把1分钟分成6段,代码执行结果如下,30-90,40-100,任意1分钟滑动窗口都满足5个最大限制。

1.4 计数器的适用场景

适用于做API限流,比如对外提供ip定位查询服务api,天气查询api等,可以根据ip做粒度控制,防止恶意刷接口造成异常,也适用于提供API查询服务做配额限制,一般限流后会对请求做丢弃处理。

局限:窗口算法对于流量限制是定速的,对细粒度时间控制突发流量控制能力就有限了。

2.漏斗桶限流

2.1 实现原理

漏斗桶形象比喻为一个滤水漏斗,水滴(请求)可能很快把漏斗填满(流量流入),漏斗出来的水滴(流量处理)是匀速固定的,桶满则新进入水滴(请求)会被限流。

图片来自网络

常用队列方式来实现,请求到达后放入队列中,有一个处理器从队列匀速取出进行处理。当桶满了,新流量过来会被限流。

Uber提供了基于漏斗桶的算法实现可以参考:

https://github.com/uber-go/ratelimit

另外:redis4.0提供了限流模块,redis-cell,该模块使用漏斗算法,并提供原子限流指令。

cl.throttle key capacity limitNum fillInteval

2.2 漏斗桶适用场景

漏斗桶更像是对流量进行整形Traffic Shaping,所有流量过来都要进行排队,依次出去,可用于做一些论坛博客发帖频率限制。

相对于计数器限流,达到限流后该时间窗口会丢弃一切请求,漏斗在桶满后,由于还会有持续流出,新到达请求还有机会流入。

局限:由于出口处理速率是匀速的,短时有大量突发请求,即使负载压力不大,请求仍需要在队列等待处理。

3.令牌桶限流

3.1 实现原理

令牌桶算法是一个桶,匀速向桶里放令牌,控制桶最大容量(令牌最大数)和放入令牌速率(生成令牌/秒)。请求从桶中拿令牌,拿到令牌可以通过,拿不到就被限流了。

当访问量小时,令牌桶可以积累令牌到桶满,而当短时突发流量,积累的令牌能保障大量请求可以立刻拿到令牌,令牌用完了,请求会依赖于新令牌申请速度,这时会退化成类似漏斗桶算法。

图片来自网络

具体实现上,可以使用redis的list,启动任务向list匀速放置数据,当有请求时从list取数据,取到代表通过,否则被限流。这么实现是可行的,但有个弊端,就是需要不断操作list,浪费内存空间,而实际上可以使用实时算法计算的方式来计算可用令牌数。

公式:可用令牌数=(当前请求时间-上次请求时间)*令牌生成速率 + 上次使用后剩余令牌数,当然这个数需要再和桶容量比较求小。

如果可用令牌数 > 0代表有令牌,剩余令牌数-1,并更新保存本次剩余令牌数和本次请求时间用于下次计算,这种方式也是惰性加载/计算的一种体现。

3.2 代码实现

//rate increment number per second//capacity total number in the bucketfunc bucketTokenRateLimit(key string, fillInterval time.Duration, limitNum int64, capacity int64) bool { currentKey := fmt.Sprintf("%s_%d_%d_%d", key, fillInterval, limitNum, capacity) numKey := "num" lastTimeKey := "lasttime" currentTime := time.Now.Unix//only init once client.HSetNX(currentKey, numKey, capacity).Result client.HSetNX(currentKey, lastTimeKey, currentTime).Result//compute current available number result, _ := client.HMGet(currentKey, numKey, lastTimeKey).Result lastNum, _ := strconv.ParseInt(result[0].(string), 0, 64)  lastTime, _ := strconv.ParseInt(result[1].(string), 0, 64)  rate := float64(limitNum) / float64(fillInterval.Seconds) fmt.Println(rate) incrNum := int64(math.Ceil(float64(currentTime-lastTime) * rate)) //increment number from lasttime to currenttime fmt.Println(incrNum) currentNum := min(lastNum+incrNum, capacity)//can accessif currentNum > 0 { var fields = map[string]interface{}{lastTimeKey: currentTime, numKey: currentNum - 1} a := client.HMSet(currentKey, fields) fmt.Println(a)return true }return false}

完整代码参见:

https://github.com/skyhackvip/ratelimit/blob/master/buckettoken.go

还有更多需要可实现细节如预热桶、一次性放入多个令牌、一次性取多个令牌。同时由于原子性问题,通过redis+lua脚本操作(lua实现令牌桶)会更好。

3.3 令牌桶适用场景

令牌桶既能够将所有请求平均分布到时间区间内,又能接受突发请求,因此使用最广泛的限流算法,像java中比较有名的guava就有实现。

4.方案对比选择


计数器
漏斗桶
令牌桶
具体实现使用全局计数
使用队列+处理器
使用漏斗算法
适用场景

API配额/限流

适合限流后丢弃处理

流量整形

适合限流后阻塞排队

大多数场景均可

5.限流部署

5.1 “分布式部署” 限流单个服务实例

限流代码在应用服务内,使用aop方式(如gin的middleware),当应用请求时(request)进行拦截检查,通过则继续执行请求,否则将被限流进行处理。

func rateLimitMiddleware gin.HandlerFunc { return func(c *gin.Context) { bucketTokenRateLimit(c.Param("uid")) }}

由于应用服务是分布式集群,每个服务实例中的限流拦截器只能拦截本实例中的请求数,那么对于总体限流就需要有一定策略分摊到每个单体实例中。比如10000次/秒,服务部署10个实例,每个实例限流可以平均分配(1000次/秒),也可根据不同实例不同权重分配

优点:可以有效防止单机突发流量导致的压垮,满足限流初衷,适合对并发做流量限制。

缺点:由于每个实例的流量不均等,可能有的实例已经限流,有的机器实例仍很空闲,牺牲部分流量。

5.2 “集中式部署”使用统一限流服务中心

5.2.1 部署统一限流中心

所有服务实例去请求统一限流中心,中心根据流量情况告知服务是否通过,这种方案最大的问题就是多了一次服务调用,同时集中限流器也会成为最大性能瓶颈。

5.2.2 限流部署在接入层

一般分布式服务都设有网关层/路由层/接入层,如果集中限流器可部署到其中,可以解决上述多调用问题。一般常用nginx + lua做网关层限流,lua脚本也可以使用上述几种算法。

优点:适合做细粒度限流或访问配额

缺点:对下游单个服务实例或依赖的服务不够平滑,仍有流量突发过载的可能,所以可以结合上面的方式一起部署,多重防护。

5.3 服务中心与单机限流结合

可以使用基于请求日志收集,分析日志,根据限流规则做限流服务,分析出限流结果后,下发限流指令(通过队列或集中配中心)到服务节点,节点进行限流控制。架构图如下:

此方案关键在于:日志处理分析的及时性,可采用flink流式计算方式。

5.4 限流规则配置

限流关键在于限流规则配置,是针对某个url还是针对一个服务,阈值应该如何设置,时间窗口如何设计,都是需要考虑的因素。

一般分几部分:接口粒度,时间粒度,最大限流数

接口粒度:限流对象可以配置多种限流策略针对服务单个实例,针对整个服务集群,针对某个接口,针对某类接口等。

时间粒度:如上述计数器算法中举例,使用1分钟做限流粒度更容易出某个小粒度时间窗口期出现异常流量。60000次/分钟,1000次/秒,10次/毫秒看似一样,但限流效果不同,时间粒度越细流量整形越好,越平滑,但也不越小越好。对秒杀类场景,瞬时流量非常大,QPS大,适合时间粒度小的。对QPS不大的场景,可以使用大的时间粒度。

最大限流数:一般需要性能压测、业务预期评估、线上监控、往期经验等来做参考设置。

更多考虑,如API接口服务针对vip用户针对普通用户,限流不同,可以用预留、权重、上限等维度进行不同调度,参考dmclock,mclock算法。

5.5 限流处理方式

限流后处理方式可以做服务降级(返回默认值、默认页面)、请求丢弃(拒绝请求)、请求排队(阻塞请求)、发送报警人工介入处理等。有直接结合服务降级熔断的如Sentinel、Hystrix。

更多参考资料

文章相关实现代码:

https://github.com/skyhackvip/ratelimit

dmclock算法参考:

https://github.com/ceph/dmclock

技术原创及架构实践文章,欢迎通过公众号菜单「联系我们」进行投稿。

高可用架构

改变互联网的构建方式

相关推荐

Docker安装详细步骤及相关环境安装配置

最近自己在虚拟机上搭建一个docker,将项目运行在虚拟机中。需要提前准备的工具,FinallShell(远程链接工具),VM(虚拟机-配置网络)、CentOS7(Linux操作系统-在虚拟机上安装)...

Linux下安装常用软件都有哪些?做了一个汇总列表,你看还缺啥?

1.安装列表MySQL5.7.11Java1.8ApacheMaven3.6+tomcat8.5gitRedisNginxpythondocker2.安装mysql1.拷贝mysql安装文件到...

Nginx安装和使用指南详细讲解(nginx1.20安装)

Nginx安装和使用指南安装1.检查并安装所需的依赖软件1).gcc:nginx编译依赖gcc环境安装命令:yuminstallgcc-c++2).pcre:(PerlCompatibleRe...

docker之安装部署Harbor(docker安装hacs)

在现代软件开发和部署环境中,Harbor作为一个企业级的容器镜像仓库,提供了高效、安全的镜像管理解决方案。通过Docker部署Harbor,可以轻松构建私有镜像仓库,满足企业对镜像存储、管理和安全性...

成功安装 Magento2.4.3最新版教程「技术干货」

外贸独立站设计公司xingbell.com经过多次的反复实验,最新版的magento2.4.3在oneinstack的环境下的详细安装教程如下:一.vps系统:LinuxCentOS7.7.19...

【Linux】——从0到1的学习,让你熟练掌握,带你玩转Linu

学习Linux并掌握Java环境配置及SpringBoot项目部署是一个系统化的过程,以下是从零开始的详细指南,帮助你逐步掌握这些技能。一、Linux基础入门1.安装Linux系统选择发行版:推荐...

cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务

cent6.5安装gitlab-ce最新版本-11.8.2并配置邮件服务(yum选择的,时间不同,版本不同)如果对运维课程感兴趣,可以在b站上搜索我的账号:运维实战课程,可以关注我,学习更多免费的运...

时隔三月,参加2020秋招散招,终拿字节跳动后端开发意向书.

3个月前头条正式批笔试4道编程题只AC了2道,然后被刷了做了200多道还是太菜了,本来对字节不抱太大希望,毕竟后台竞争太大,而且字节招客户端开发比较多。后来看到有散招免笔试,抱着试一试的心态投了,然而...

Redisson:Java程序员手中的“魔法锁”

Redisson:Java程序员手中的“魔法锁”在这个万物互联的时代,分布式系统已经成为主流。然而,随着系统的扩展,共享资源的争夺成为了一个棘手的问题。就比如你想在淘宝“秒杀”一款商品,却发现抢的人太...

【线上故障复盘】RPC 线程池被打满,1024个线程居然不够用?

1.故障背景昨天晚上,我刚到家里打开公司群,就看见群里有人讨论:线上环境出现大量RPC请求报错,异常原因:被线程池拒绝。虽然异常量很大,但是异常服务非核心服务,属于系统旁路,服务于数据核对任务,即使...

小红书取消大小周,有人不高兴了!

小红书宣布五一节假日之后,取消大小周,恢复为正常的双休,乍一看工作时长变少,按道理来说大家应该都会很开心,毕竟上班时间缩短了,但是还是有一些小红书的朋友高兴不起来,心情很复杂。因为没有了大小周,以前...

延迟任务的多种实现方案(延迟机制)

场景订单超时自动取消:延迟任务典型的使用场景是订单超时自动取消。功能精确的时间控制:延时任务的时间控制要尽量准确。可靠性:延时任务的处理要是可靠的,确保所有任务最终都能被执行。这通常要求延时任务的方案...

百度java面试真题(java面试题下载)

1、SpingBoot也有定时任务?是什么注解?在SpringBoot中使用定时任务主要有两种不同的方式,一个就是使用Spring中的@Scheduled注解,另一个则是使用第三方框架Q...

回归基础:访问 Kubernetes Pod(concurrent.futures访问数据库)

Kubernetes是一头巨大的野兽。在它开始有用之前,您需要了解许多概念。在这里,学习几种访问集群外pod的方法。Kubernetes是一头巨大的野兽。在它开始有用之前,您需要了解许多不同的...

Spring 缓存神器 @Cacheable:3 分钟学会优化高频数据访问

在互联网应用中,高频数据查询(如商品详情、用户信息)往往成为性能瓶颈。每次请求都触发数据库查询,不仅增加服务器压力,还会导致响应延迟。Spring框架提供的@Cacheable注解,就像给方法加了一...

取消回复欢迎 发表评论: