百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

想知道Redis字典结构的底层是如何实现的嘛

mhr18 2024-11-15 22:07 15 浏览 0 评论

一、前言#

上节《闲扯Redis六》Redis五种数据类型之Hash型 中说到 Hash(哈希对象)的底层实现有:

1、ziplist 编码的哈希对象使用压缩列表作为底层实现2、hashtable 编码的哈希对象使用字典作为底层实现

原文解析

那么第二种方式中的字典究竟是怎样的一种结构呢?


字典, 又称符号表(symbol table)、关联数组(associative array)或者映射(map), 是一种用于保存键值对(key-value pair)的抽象数据结构。在字典中, 一个键(key)可以和一个值(value)进行关联(或者说将键映射为值), 这些关联的键和值就被称为键值对。

字典中的每个键都是独一无二的, 程序可以在字典中根据键查找与之关联的值, 或者通过键来更新值, 又或者根据键来删除整个键值对, 等等。

二、实现分析#

Redis 的字典采用哈希表作为底层实现, 一个哈希表里面可以有多个哈希表节点, 而每个哈希表节点就保存了字典中的一个键值对。所以咱们依次来分析一下哈希表、哈希表节点、以及字典的结构。

1.哈希表结构#

哈希表结构定义 (dict.h/dictht):

Copytypedef struct dictht {

    // 哈希表数组
    dictEntry **table;

    // 哈希表大小
    unsigned long size;

    // 哈希表大小掩码,用于计算索引值
    // 总是等于 size - 1
    unsigned long sizemask;

    // 该哈希表已有节点的数量
    unsigned long used;

} dictht;

描述

Copytable 属性是一个数组, 数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针, 每个 dictEntry 结构保存着一个键值对。

size 属性记录了哈希表的大小, 也即是 table 数组的大小, 而 used 属性则记录了哈希表目前已有节点(键值对)的数量。

sizemask 属性的值总是等于 size - 1 , 这个属性和哈希值一起决定一个键应该被放到 table 数组的哪个索引上面。

结构图解:一个空的哈希表


2.哈希表节点#

一个哈希表里面可以有多个哈希表节点,那么每个哈希表节点的结构以及多个哈希表节点之间的存储关系是怎么样的呢?

哈希表节点结构定义 (dictEntry):

Copytypedef struct dictEntry {

    // 键
    void *key;

    // 值
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
    } v;

    // 指向下个哈希表节点,形成链表
    struct dictEntry *next;

} dictEntry;

描述

Copykey 属性保存着键值对中的键, 而 v 属性则保存着键值对中的值, 其中键值对的值可以是一个指针, 
或者是一个 uint64_t 整数, 又或者是一个 int64_t 整数。

next 属性是指向另一个哈希表节点的指针, 这个指针可以将多个哈希值相同的键值对连接在一次, 

以此来解决键冲突(collision)的问题。

结构图解:多个哈希值相同的键值对存储结构,解决键冲突


3.字典结构实现#

字典结构定义 (dict.h/dict):

Copytypedef struct dict {

    // 类型特定函数
    dictType *type;

    // 私有数据
    void *privdata;

    // 哈希表
    dictht ht[2];

    // rehash 索引
    // 当 rehash 不在进行时,值为 -1
    int rehashidx; /* rehashing not in progress if rehashidx == -1 */

} dict;

描述:type 属性和 privdata 属性是针对不同类型的键值对, 为创建多态字典而设置的

Copytype 属性是一个指向 dictType 结构的指针, 每个 dictType 结构保存了一簇用于操作特定类型键值对的函数,
Redis 会为用途不同的字典设置不同的类型特定函数。

privdata 属性则保存了需要传给那些类型特定函数的可选参数。
Copytypedef struct dictType {

    // 计算哈希值的函数
    unsigned int (*hashFunction)(const void *key);

    // 复制键的函数
    void *(*keyDup)(void *privdata, const void *key);

    // 复制值的函数
    void *(*valDup)(void *privdata, const void *obj);

    // 对比键的函数
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);

    // 销毁键的函数
    void (*keyDestructor)(void *privdata, void *key);

    // 销毁值的函数
    void (*valDestructor)(void *privdata, void *obj);

} dictType;

ht 属性是一个包含两个项的数组, 数组中的每个项都是一个 dictht 哈希表, 一般情况下, 字典只使用 ht[0] 哈希表, ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash 时使用。

除了 ht[1] 之外, 另一个和 rehash 有关的属性就是 rehashidx : 它记录了 rehash 目前的进度, 如果目前没有在进行 rehash , 那么它的值为 -1 。

结构图解:普通状态下(没有进行 rehash)的字典


三、哈希表分析#

1.哈希算法#

当要将一个新的键值对添加到字典里面时, 程序需要先根据键值对的键计算出哈希值和索引值, 然后再根据索引值, 将包含新键值对的哈希表节点放到哈希表数组的指定索引上面。

Redis 计算哈希值和索引值的方法如下:

Copy
# 使用字典设置的哈希函数,计算键 key 的哈希值
hash = dict->type->hashFunction(key);

# 使用哈希表的 sizemask 属性和哈希值,计算出索引值
# 根据情况不同, ht[x] 可以是 ht[0] 或者 ht[1]
index = hash & dict->ht[x].sizemask;

如图 4-4:


举个例子, 对于图 4-4 所示的字典来说, 如果我们要将一个键值对 k0 和 v0 添加到字典里面, 那么程序会先使用语句:

Copyhash = dict->type->hashFunction(k0);

计算键 k0 的哈希值。

假设计算得出的哈希值为 8 , 那么程序会继续使用语句:

Copyindex = hash & dict->ht[0].sizemask = 8 & 3 = 0;

计算出键 k0 的索引值 0 , 这表示包含键值对 k0 和 v0 的节点应该被放置到哈希表数组的索引 0 位置上,结构图解:图 4-5


2.键冲突解决#

当有两个或以上数量的键被分配到了哈希表数组的同一个索引上面时, 我们称这些键发生了冲突(collision)。

Redis 的哈希表使用链地址法(separate chaining)来解决键冲突: 每个哈希表节点都有一个 next 指针, 多个哈希表节点可以用 next 指针构成一个单向链表, 被分配到同一个索引上的多个节点可以用这个单向链表连接起来, 这就解决了键冲突的问题。

举个例子, 假设程序要将键值对 k2 和 v2 添加到图 4-6 所示的哈希表里面, 并且计算得出 k2 的索引值为 2 , 那么键 k1 和 k2 将产生冲突, 而解决冲突的办法就是使用 next 指针将键 k2 和 k1 所在的节点连接起来。结构图解:图 4-7


因为 dictEntry 节点组成的链表没有指向链表表尾的指针, 所以为了速度考虑, 程序总是将新节点添加到链表的表头位置(复杂度为 O(1)), 排在其他已有节点的前面。


四、要点总结#

1.字典 ht 属性是包含两个哈希表项的数组,一般情况下, 字典只使用 ht[0], ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash (下节分析) 时使用

2.哈希表使用链地址法(separate chaining)来解决键冲突

3.键值对添加到字典的过程, 先根据键值对的键计算出哈希值和索引值, 然后再根据索引值, 将包含新键值对的哈希表节点放到哈希表数组的指定索引上面

喜欢的朋友可以关注转发私信 需要资料的可以私信

相关推荐

C++开发必知的内存问题及常用的解决方法-经典文章

1.内存管理功能问题由于C++语言对内存有主动控制权,内存使用灵活和效率高,但代价是不小心使用就会导致以下内存错误:omemoryoverrun:写内存越界odoublefree:同一块内...

缓存用不好,系统崩得早!10条军规让你成为缓存高手

凌晨三点,我被电话惊醒:“苏工!首页崩了!”监控显示:缓存命中率0%,数据库QPS10万+,线程阻塞2000+。根本原因竟是同事没加缓存!不会用缓存的程序员,就像不会刹车的赛车手——...

彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏

作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...

Java中间件-Memcached(Java中间件大全)

一、知识结构及面试题目分析缓存技术的大规模使用是互联网架构区别于传统IT技术最大的地方,是整体高并发高性能架构设计中是重中之重的关键一笔,也是互联网公司比较偏好的面试题目。按照在软件系统中所处位置...

linux内存碎片防治技术(linux内存碎片整理)

推荐视频:90分钟了解Linux内存架构,numa的优势,slab的实现,vmalloc原理剖析Linux内核内存分配与回收Linuxkernel组织管理物理内存的方式是buddysystem(伙...

Redis主从架构详解(redis主从配置详细过程)

Redis主从架构搭建Redis主节点配置创建主节点目录(/opt/redis-master),复制redis.conf到该目录下,redis.conf配置项修改#后台启动daemonizeyes...

揭开CXL内存的神秘面纱(内存c1)

摘要:现代数据中心对内存容量的高需求促进了内存扩展和分解方面的多条创新线,其中一项获得极大关注的工作是基于ComputeeXpressLink(CXL)的内存扩展。为了更好地利用CXL,研究人员建...

一文彻底弄懂 TPS RPS QPS(tps cps)

以下是关于RPS、QPS、TPS的核心区别与关联的总结,结合实际场景和优化建议:一、核心定义与区别RPS:RequestsPerSecond每秒请求数客户端到服务器的完整请求数量Web服务...

用Redis的“集合”找出你和朋友的“共同关注”

你是不是在刷抖音、微博、小红书的时候,常常会看到这样的提示:“你和XXX有共同关注的博主/朋友”?或者当你关注了一个新的明星,系统会推荐“你的朋友YYY也关注了这位明星”?这个看似简单的功能背后,其实...

WOT2016彭哲夫:科班出身开发者对运维人员的期许

“运维与开发”是老生常谈的话题,前几天和一个运维人聊天,TA说一些公司运维岗位都不公开招聘了,这让众多运维人员情何以堪?是运维的岗位真的饱和了?是找到合适的运维人才难?还是有这样那样的因素?带着这些疑...

Java程序员最常用的20%技术总结(java程序员要掌握什么)

我听说编程语言,经常使用的是其中20%的技术。在Java这门语言中,这20%包括哪些内容?找到一份Java初级程序员的工作,有哪些是必须掌握的,有哪些是可以现学现卖的?一个完整的Javaweb项目,有...

秒杀系统实战(四)| 缓存与数据库双写一致性实战

前言微笑挖坑,努力填坑。————已经拥有黑眼圈,但还没学会小猪老师时间管理学的蛮三刀同学本文是秒杀系统的第四篇,我们来讨论秒杀系统中「缓存热点数据」的问题,进一步延伸到数据库和缓存的...

头条评论精灵翻牌子(头条评论精灵翻牌子怎么弄)

关于“头条评论精灵翻牌子”功能,这通常是指平台通过算法或运营手段,将用户的优质评论随机或定向推送到更显眼的位置(如信息流顶部、独立曝光位等),以提升互动率和用户参与感。以下是详细解析和建议:一、功能理...

15个程序员们都应该知道的大模型高级提示词指令模板和示例

作为程序员你如何写大模型指令?你写的指令是不是更专业呢?下面是15个程序员使用的专业的大模型指令,如果早知道可以能节省你很多时间。这些指令可以用在chatgpt,deepseek等大模型。1.一键...

MyBatis-Plus内置的主键生成策略有大坑,要注意!

昨天小伙伴使用Mybaits-Plus开发的项目线上(集群、K8S)出现了主键重复问题,其报错如下:Mybatis-Plus启动时会通过com.baomidou.mybatisplus.core.to...

取消回复欢迎 发表评论: