小白都能看懂的Redis(一)(redis新手教程)
mhr18 2024-11-15 22:07 20 浏览 0 评论
1、基本类型及底层实现
1.1、String
用途:
适用于简单key-value存储、setnx key value实现分布式锁、计数器(原子性)、分布式全局唯一ID。
底层:C语言中String用char[]数组表示,源码中用SDS(simple dynamic string)封装char[],这是是Redis存储的最小单元,一个SDS最大可以存储512M信息。
struct sdshdr{
unsigned int len; // 标记char[]的长度
unsigned int free; //标记char[]中未使用的元素个数
char buf[]; // 存放元素的坑
}
Redis对SDS再次封装生成了RedisObject,核心有两个作用:
说明是5种类型哪一种。
里面有指针用来指向 SDS。
当你执行set name sowhat的时候,其实Redis会创建两个RedisObject对象,键的RedisObject 和 值的RedisOjbect 其中它们type = REDIS_STRING,而SDS分别存储的就是 name 跟 sowhat 字符串咯。
并且Redis底层对SDS有如下优化:
SDS修改后大小 > 1M时 系统会多分配空间来进行空间预分配。
SDS是惰性释放空间的,你free了空间,可是系统把数据记录下来下次想用时候可直接使用。不用新申请空间。
1.2、List
查看源码底层 adlist.h 会发现底层就是个 双端链表,该链表最大长度为2^32-1。常用就这几个组合。
lpush + lpop = stack 先进后出的栈
lpush + rpop = queue 先进先出的队列
lpush + ltrim = capped collection 有限集合
lpush + brpop = message queue 消息队列
一般可以用来做简单的消息队列,并且当数据量小的时候可能用到独有的压缩列表来提升性能。当然专业点还是要 RabbitMQ、ActiveMQ等
1.3、Hash
散列非常适用于将一些相关的数据存储在一起,比如用户的购物车。该类型在日常用途还是挺多的。
这里需要明确一点:Redis中只有一个K,一个V。其中 K 绝对是字符串对象,而 V 可以是String、List、Hash、Set、ZSet任意一种。
hash的底层主要是采用字典dict的结构,整体呈现层层封装。从小到大如下:
1.3.1、dictEntry
真正的数据节点,包括key、value 和 next 节点。
1.3.2、dictht
1、数据 dictEntry 类型的数组,每个数组的item可能都指向一个链表。
2、数组长度 size。
3、sizemask 等于 size - 1。
4、当前 dictEntry 数组中包含总共多少节点。
1.3.3、dict
1、dictType 类型,包括一些自定义函数,这些函数使得key和value能够存储
2、rehashidx 其实是一个标志量,如果为-1说明当前没有扩容,如果不为 -1 则记录扩容位置。
3、dictht数组,两个Hash表。
4、iterators 记录了当前字典正在进行中的迭代器
组合后结构就是如下:
1.3.4、渐进式扩容
为什么 dictht ht[2]是两个呢?目的是在扩容的同时不影响前端的CURD,慢慢的把数据从ht[0]转移到ht[1]中,同时rehashindex来记录转移的情况,当全部转移完成,将ht[1]改成ht[0]使用。
rehashidx = -1说明当前没有扩容,rehashidx != -1则表示扩容到数组中的第几个了。
扩容之后的数组大小为大于used*2的2的n次方的最小值,跟 HashMap 类似。然后挨个遍历数组同时调整rehashidx的值,对每个dictEntry[i] 再挨个遍历链表将数据 Hash 后重新映射到 dictht[1]里面。并且 dictht[0].use 跟 dictht[1].use 是动态变化的。
整个过程的重点在于rehashidx,其为第一个数组正在移动的下标位置,如果当前内存不够,或者操作系统繁忙,扩容的过程可以随时停止。
停止之后如果对该对象进行操作,那是什么样子的呢?
1、如果是新增,则直接新增后第二个数组,因为如果新增到第一个数组,以后还是要移过来,没必要浪费时间
2、如果是删除,更新,查询,则先查找第一个数组,如果没找到,则再查询第二个数组。
1.4、Set
如果你明白Java中HashSet是HashMap的简化版那么这个Set应该也理解了。都是一样的套路而已。这里你可以认为是没有Value的Dict。看源码 t.set.c 就可以了解本质了。
int setTypeAdd(robj *subject, robj *value) {
long long llval;
if (subject->encoding == REDIS_ENCODING_HT) {
// 看到底层调用的还是dictAdd,只不过第三个参数= NULL
if (dictAdd(subject->ptr,value,NULL) == DICT_OK) {
incrRefCount(value);
return 1;
}
....
1.5、ZSet
范围查找 的天敌就是 有序集合,看底层 redis.h 后就会发现 Zset用的就是可以跟二叉树媲美的跳跃表来实现有序。跳表就是多层链表的结合体,跳表分为许多层(level),每一层都可以看作是数据的索引,这些索引的意义就是加快跳表查找数据速度。
每一层的数据都是有序的,上一层数据是下一层数据的子集,并且第一层(level 1)包含了全部的数据;层次越高,跳跃性越大,包含的数据越少。并且随便插入一个数据该数据是否会是跳表索引完全随机的跟玩骰子一样。
跳表包含一个表头,它查找数据时,是从上往下,从左往右进行查找。现在找出值为37的节点为例,来对比说明跳表和普遍的链表。
- 没有跳表查询 比如我查询数据37,如果没有上面的索引时候路线如下图:
- 有跳表查询 有跳表查询37的时候路线如下图:应用场景:
积分排行榜、时间排序新闻、延时队列。
1.6、Redis Geo
以前写过Redis Geo核心原理解析,想看的直接跳转即可。他的核心思想就是将地球近似为球体来看待,然后 GEO利用 GeoHash 将二维的经纬度转换成字符串,来实现位置的划分跟指定距离的查询。
1.7、HyperLogLog
HyperLogLog :是一种概率数据结构,它使用概率算法来统计集合的近似基数。而它算法的最本源则是伯努利过程 + 分桶 + 调和平均数。具体实现可看 HyperLogLog 讲解。
功能:误差允许范围内做基数统计 (基数就是指一个集合中不同值的个数) 的时候非常有用,每个HyperLogLog的键可以计算接近2^64不同元素的基数,而大小只需要12KB。错误率大概在0.81%。所以如果用做 UV 统计很合适。
HyperLogLog底层 一共分了 2^14 个桶,也就是 16384 个桶。每个(registers)桶中是一个 6 bit 的数组,这里有个骚操作就是一般人可能直接用一个字节当桶浪费2个bit空间,但是Redis底层只用6个然后通过前后拼接实现对内存用到了极致,最终就是 16384*6/8/1024 = 12KB。
1.8、bitmap
BitMap 原本的含义是用一个比特位来映射某个元素的状态。由于一个比特位只能表示 0 和 1 两种状态,所以 BitMap 能映射的状态有限,但是使用比特位的优势是能大量的节省内存空间。
在 Redis 中BitMap 底层是基于字符串类型实现的,可以把 Bitmaps 想象成一个以比特位为单位的数组,数组的每个单元只能存储0和1,数组的下标在 Bitmaps 中叫做偏移量,BitMap 的 offset 值上限 2^32 - 1。
- 用户签到
key = 年份:用户id offset = (今天是一年中的第几天) % (今年的天数)
- 统计活跃用户
使用日期作为 key,然后用户 id 为 offset 设置不同offset为0 1 即可。
PS : Redis 它的通讯协议是基于TCP的应用层协议 RESP(REdis Serialization Protocol)。
1.9、Bloom Filter
使用布隆过滤器得到的判断结果:不存在的一定不存在,存在的不一定存在。
布隆过滤器 原理:
当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点(有效降低冲突概率),把它们置为1。检索时,我们只要看看这些点是不是都是1就知道集合中有没有它了:如果这些点有任何一个为0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。
想玩的话可以用Google的guava包玩耍一番。
相关推荐
- 说说Redis的单线程架构(redis的单线程模型)
-
一句话总结Redis采用单线程处理命令请求,避免了多线程的上下文切换和锁竞争,保证原子性操作。其基于内存的高效执行和I/O多路复用模型支撑了高并发性能。网络I/O和持久化操作(如RDB/AOF)由后台...
- 答记者问之 - Redis 的高效架构与应用模式解析
-
问:极客程序员你好,请帮我讲一讲redis答:redis主要涉及以下核心,我来一一揭幕Redis的高效架构与应用模式解析Redis是一个开源的内存数据存储系统,因其高性能、丰富的数据结构和易用性...
- Redis的5种核心数据结构,及其最经典的“应用场景”
-
Redis凭什么稳坐缓存界头把交椅?全靠这五个“身怀绝技”的数据结构!在分布式系统的江湖里,Redis就像一位身怀绝技的武林高手,而它的五大核心数据结构正是克敌制胜的五套绝学。今天咱们就来拆解这些独门...
- 精准定位文件包含漏洞:代码审计中的实战思维
-
前言最近看到由有分析梦想cms的,然后也去搭建了一个环境看了一看,发现了一个文件包含漏洞的点,很有意思,下面是详细的复现和分析,以后代码审计又多了一中挖掘文件包含漏洞的新思路环境搭建下载https...
- ARDM:一款国产跨平台的Redis管理工具
-
ARDM(AnotherRedisDesktopManager)是一款免费开源的Redis桌面管理客户端,支持Windows、Mac、Linux跨平台。功能特性ARDM提供的主要功能如...
- SpringBoot的Web应用开发——Web缓存利器Redis的应用!
-
Web缓存利器Redis的应用Redis是目前使用非常广泛的开源的内存数据库,是一个高性能的keyvalue数据库,它支持多种数据结构,常用做缓存、消息代理和配置中心。本节将简单介绍Redis的使...
- Windows服务器部署CRMEB开源电商系统,详细教程来了!
-
安装PHP已经安装过PHP的可以跳过首先安装VC运行库下载地址https://docs.microsoft.com/zh-cn/cpp/windows/latest-supported-vc-redi...
- Windows系统下Redis各个安装包介绍与选择指南
-
简介Redis作为高性能的键值数据库,广泛应用于缓存、消息队列等场景。在Windows系统中部署Redis时,用户可以选择多种安装包以满足不同的需求。本文将详细介绍以下Redis8.0.3版本的安装...
- 从面试题入手,深度剖析Redis Cluster原理
-
揭开RedisCluster的神秘面纱**在当今数字化浪潮中,数据量呈爆炸式增长,应用程序对数据存储和处理的要求也日益严苛。Redis作为一款高性能的内存数据库,凭借其出色的读写速度和丰富的数...
- 给大家推荐些好的c语言代码的网站
-
C语言,那就来推荐几个吧,部分含有C++:1、TheLinuxKernelArchives(kernel.org)Linux内核源码,仅限于C,但内核庞大,不太适合新手;2、redis(redi...
- Redis String 类型的底层实现与性能优化
-
RedisString是Redis中最基础也是应用最广泛的数据类型,它能存储文本、数字、二进制数据等多种形式的信息。深入理解其底层实现对构建高性能分布式系统至关重要。Redis字符串的底层结...
- 阿里面试问:Redis 为什么把简单的字符串设计成 SDS?
-
分享了一道面阿里的redis题,我看了以后觉得挺有意思。题目大致是这样的面试官:了解redis的String数据结构底层实现嘛?铁子:当然知道,是基于SDS实现的面试官:redis是用C语言开发的,那...
- 编程语言那么多,为何C语言能成为最成功的语言?
-
编程语言那么多,为何C语言能成为最成功的语言?2025年嵌入式岗位暴增47%,新人却还在问"C语言过时了吗"。真相是连机器人关节驱动都得靠它写,不会指针连芯片手册都看不懂。见过用Pyt...
- go-zero 使用 redis 作为 cache 的 2 种姿势
-
在go-zero框架内,如在rpc的应用service中,其内部已经预置了redis的应用,所以我们只需要在配置中加入相关字段即可,另外,在svcContext声明redisc...
- Redis事务深度解析:ACID特性、执行机制与生产实践指南
-
一、Redis事务的本质与核心机制Redis事务通过MULTI、EXEC、WATCH等命令实现,其本质是将多个命令序列化后一次性执行,而非传统数据库的严格事务模型。核心特点如下:命令队列化:MULT...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (83)
- php redis (97)
- redis 存储 (67)
- redis 锁 (74)
- 启动 redis (73)
- redis 时间 (60)
- redis 删除 (69)
- redis内存 (64)
- redis并发 (53)
- redis 主从 (71)
- redis同步 (53)
- redis 哨兵 (52)
- redis结构 (53)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)