百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

实战解析朝生暮死的Redis拓展应用—过期策略和LRU,继续强化学习

mhr18 2024-11-09 12:19 25 浏览 0 评论

今天,我们继续Redis的拓展应用,继续深化了解、强化学习效果。

拓展 4:朝生暮死 —— 过期策略

Redis 所有的数据结构都可以设置过期时间,时间一到,就会自动删除。你可以想象 Redis 内部有一个死神,时刻盯着所有设置了过期时间的 key,寿命一到就会立即收割。

你还可以进一步站在死神的角度思考,会不会因为同一时间太多的 key 过期,以至于忙不过来。同时因为 Redis 是单线程的,收割的时间也会占用线程的处理时间,如果收割的太过于繁忙,会不会导致线上读写指令出现卡顿。 这些问题 Antirez 早就想到了,所以在过期这件事上,Redis 非常小心。

过期的 key 集合

redis 会将每个设置了过期时间的 key 放入到一个独立的字典中,以后会定时遍历这个字典来删除到期的 key。除了定时遍历之外,它还会使用惰性策略来删除过期的 key,所谓惰性策略就是在客户端访问这个 key 的时候,redis 对 key 的过期时间进行检查,如果过期了就立即删除。定时删除是集中处理,惰性删除是零散处理。

定时扫描策略

Redis 默认会每秒进行十次过期扫描,过期扫描不会遍历过期字典中所有的 key,而是采用了一种简单的贪心策略。

  • ?1、从过期字典中随机 20 个 key;
  • 2、删除这 20 个 key 中已经过期的 key;
  • 3、如果过期的 key 比率超过 1/4,那就重复步骤 1;

?同时,为了保证过期扫描不会出现循环过度,导致线程卡死现象,算法还增加了扫描时间的上限,默认不会超过 25ms。

设想一个大型的 Redis 实例中所有的 key 在同一时间过期了,会出现怎样的结果?

毫无疑问,Redis 会持续扫描过期字典 (循环多次),直到过期字典中过期的 key 变得稀疏,才会停止 (循环次数明显下降)。这就会导致线上读写请求出现明显的卡顿现象。导致这 种卡顿的另外一种原因是内存管理器需要频繁回收内存页,这也会产生一定的 CPU 消耗。

?也许你会争辩说“扫描不是有 25ms 的时间上限了么,怎么会导致卡顿呢”?这里打个 比方,假如有 101 个客户端同时将请求发过来了,然后前 100 个请求的执行时间都是 25ms,那么第 101 个指令需要等待多久才能执行?2500ms,这个就是客户端的卡顿时间, 是由服务器不间断的小卡顿积少成多导致的。

所以业务开发人员一定要注意过期时间,如果有大批量的 key 过期,要给过期时间设置 一个随机范围,而不能全部在同一时间过期。

# 在目标过期时间上增加一天的随机时间
redis.expire_at(key, random.randint(86400) + expire_ts)

在一些活动系统中,因为活动是一期一会,下一期活动举办时,前面几期的很多数据都可以丢弃了,所以需要给相关的活动数据设置一个过期时间,以减少不必要的 Redis 内存占用。如果不加注意,你可能会将过期时间设置为活动结束时间再增加一个常量的冗余时间, 如果参与活动的人数太多,就会导致大量的 key 同时过期。

掌阅服务端在开发过程中就曾出现过多次因为大量 key 同时过期导致的卡顿报警现象, 通过将过期时间随机化总是能很好地解决了这个问题,希望读者们今后能少犯这样的错误。

从库的过期策略

从库不会进行过期扫描,从库对过期的处理是被动的。主库在 key 到期时,会在 AOF 文件里增加一条 del 指令,同步到所有的从库,从库通过执行这条 del 指令来删除过期的 key。 因为指令同步是异步进行的,所以主库过期的 key 的 del 指令没有及时同步到从库的话,会出现主从数据的不一致,主库没有的数据在从库里还存在,比如上一节的集群环境分 布式锁的算法漏洞就是因为这个同步延迟产生的。

拓展 5:优胜劣汰 —— LRU

?当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap)。 交换会让 Redis 的性能急剧下降,对于访问量比较频繁的 Redis 来说,这样龟速的存取效率 基本上等于不可用。

在生产环境中我们是不允许 Redis 出现交换行为的,为了限制最大使用内存,Redis 提 供了配置参数 maxmemory 来限制内存超出期望大小。

当实际内存超出 maxmemory 时,Redis 提供了几种可选策略 (maxmemory-policy) 来让 用户自己决定该如何腾出新的空间以继续提供读写服务。

  • noeviction 不会继续服务写请求 (DEL 请求可以继续服务),读请求可以继续进行。这样可以保证不会丢失数据,但是会让线上的业务不能持续进行。这是默认的淘汰策略。
  • volatile-lru 尝试淘汰设置了过期时间的 key,最少使用的 key 优先被淘汰。没有设置过期时间的 key 不会被淘汰,这样可以保证需要持久化的数据不会突然丢失。
  • volatile-ttl 跟上面一样,除了淘汰的策略不是 LRU,而是 key 的剩余寿命 ttl 的值,ttl越小越优先被淘汰。
  • volatile-random 跟上面一样,不过淘汰的 key 是过期 key 集合中随机的 key。
  • allkeys-lru 区别于 volatile-lru,这个策略要淘汰的 key 对象是全体的 key 集合,而不只是过期的 key 集合。这意味着没有设置过期时间的 key 也会被淘汰。
  • allkeys-random 跟上面一样,不过淘汰的策略是随机的 key。
  • volatile-xxx 策略只会针对带过期时间的 key 进行淘汰,allkeys-xxx 策略会对所有的key 进行淘汰。如果你只是拿 Redis 做缓存,那应该使用 allkeys-xxx,客户端写缓存时不必携带过期时间。如果你还想同时使用 Redis 的持久化功能,那就使用 volatile-xxx策略,这样可以保留没有设置过期时间的 key,它们是永久的 key 不会被 LRU 算法淘汰。

LRU 算法

实现 LRU 算法除了需要 key/value 字典外,还需要附加一个链表,链表中的元素按照一定的顺序进行排列。当空间满的时候,会踢掉链表尾部的元素。当字典的某个元素被访问时,它在链表中的位置会被移动到表头。所以链表的元素排列顺序就是元素最近被访问的时间顺序。

?位于链表尾部的元素就是不被重用的元素,所以会被踢掉。位于表头的元素就是最近刚刚被人用过的元素,所以暂时不会被踢。 下面我们使用 Python 的 OrderedDict(双向链表+字典) 来实现一个简单的 LRU 算法。

from collections import OrderedDict
class LRUDict(OrderedDict):
 def __init__(self, capacity):
 self.capacity = capacity
 self.items = OrderedDict()
 def __setitem__(self, key, value):
 old_value = self.items.get(key)
 if old_value is not None:
 self.items.pop(key)
 self.items[key] = value
 elif len(self.items) < self.capacity:
 self.items[key] = value
 else:
 self.items.popitem(last=True)
 self.items[key] = value
 def __getitem__(self, key):
 value = self.items.get(key)
 if value is not None:
 self.items.pop(key)
 self.items[key] = value
 return value
 def __repr__(self):
 return repr(self.items)
d = LRUDict(10)
for i in range(15):
 d[i] = i
print d

近似 LRU 算法

Redis 使用的是一种近似 LRU 算法,它跟 LRU 算法还不太一样。之所以不使用 LRU算法,是因为需要消耗大量的额外的内存,需要对现有的数据结构进行较大的改造。近似LRU 算法则很简单,在现有数据结构的基础上使用随机采样法来淘汰元素,能达到和 LRU算法非常近似的效果。Redis 为实现近似 LRU 算法,它给每个 key 增加了一个额外的小字段,这个字段的长度是 24 个 bit,也就是最后一次被访问的时间戳。

之前咱们提到过处理 key 过期方式分为集中处理和懒惰处理,LRU 淘汰不一样,它的处理方式只有懒惰处理。当 Redis 执行写操作时,发现内存超出 maxmemory,就会执行一次LRU 淘汰算法。这个算法也很简单,就是随机采样出 5(可以配置) 个 key,然后淘汰掉最旧的 key,如果淘汰后内存还是超出 maxmemory,那就继续随机采样淘汰,直到内存低于maxmemory 为止。

如何采样就是看 maxmemory-policy 的配置,如果是 allkeys 就是从所有的 key 字典中随机,如果是 volatile 就从带过期时间的 key 字典中随机。每次采样多少个 key 看的是maxmemory_samples 的配置,默认为 5。

下面是随机 LRU 算法和严格 LRU 算法的效果对比图:

图中绿色部分是新加入的 key,深灰色部分是老旧的 key,浅灰色部分是通过 LRU 算 法淘汰掉的 key。从图中可以看出采样数量越大,近似 LRU 算法的效果越接近严格 LRU 算法。同时 Redis3.0 在算法中增加了淘汰池,进一步提升了近似 LRU 算法的效果。

淘汰池是一个数组,它的大小是 maxmemory_samples,在每一次淘汰循环中,新随机出 来的 key 列表会和淘汰池中的 key 列表进行融合,淘汰掉最旧的一个 key 之后,保留剩余较旧的 key 列表放入淘汰池中留待下一个循环。

好了,这就是本期小编整理的Redis拓展应用——过期策略和LRU,只是小编自己的理解,有哪里不准确的地方,还请大佬们指出,咱们共同进步。

喜欢的话请多多点赞评论分享,让更多人看到获益,关注小编,后续小编会带来更丰富的学习内天更新,你们的支持就是小编最大的动力!!!

相关推荐

【预警通报】关于WebLogic存在远程代码执行高危漏洞的预警通报

近日,Oracle官方发布了2021年1月关键补丁更新公告CPU(CriticalPatchUpdate),共修复了包括CVE-2021-2109(WeblogicServer远程代码执行漏洞)...

医院信息系统突发应急演练记录(医院信息化应急演练)

信息系统突发事件应急预案演练记录演练内容信息系统突发事件应急预案演练参与人员信息科参与科室:全院各部门日期xxxx-xx-xx时间20:00至24:00地点信息科记录:xxx1、...

一文掌握怎么利用Shell+Python实现完美版的多数据源备份程序

简介:在当今数字化时代,无论是企业还是个人,数据的安全性和业务的连续性都是至关重要的。数据一旦丢失,可能会造成无法估量的损失。因此,如何有效地对分布在不同位置的数据进行备份,尤其是异地备份,成为了一个...

docker搭建系统环境(docker搭建centos)

Docker安装(CentOS7)1.卸载旧版Docker#检查已安装版本yumlistinstalled|grepdocker#卸载旧版本yumremove-ydocker.x...

基础篇:数据库 SQL 入门教程(sql数据库入门书籍推荐)

SQL介绍什么是SQLSQL指结构化查询语言,是用于访问和处理数据库的标准的计算机语言。它使我们有能力访问数据库,可与多种数据库程序协同工作,如MSAccess、DB2、Informix、M...

Java21杀手级新特性!3行代码性能翻倍

导语某券商系统用这招,交易延迟从12ms降到0.8ms!本文揭秘Oracle官方未公开的Record模式匹配+虚拟线程深度优化+向量API神操作,代码量直降70%!一、Record模式匹配(代码量↓8...

一文读懂JDK21的虚拟线程(java虚拟线程)

概述JDK21已于2023年9月19日发布,作为Oracle标准Java实现的一个LTS版本发布,发布了15想新特性,其中虚拟线程呼声较高。虚拟线程是JDK21中引入的一项重要特性,它是一种轻量级的...

效率!MacOS下超级好用的Linux虚拟工具:Lima

对于MacOS用户来说,搭建Linux虚拟环境一直是件让人头疼的事。无论是VirtualBox还是商业的VMware,都显得过于笨重且配置复杂。今天,我们要介绍一个轻巧方便的纯命令行Linux虚拟工具...

所谓SaaS(所谓三维目标一般都应包括)

2010年前后,一个科技媒体的主编写一些关于云计算的概念性问题,就可以作为头版头条了。那时候的云计算,更多的还停留在一些概念性的问题上。而基于云计算而生的SaaS更是“养在深闺人未识”,一度成为被IT...

ORA-00600 「25027」 「x」报错(报错0xc0000001)

问题现象:在用到LOB大对象的业务中,进行数据的插入,失败了,在报警文件中报错:ORA-00600:内部错误代码,参数:[25027],[10],[0],[],[],[],[],[...

安卓7源码编译(安卓源码编译环境lunch失败,uname命令找不到)

前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...

编译安卓源码(编译安卓源码 电脑配置)

前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...

360 Vulcan Team首战告捷 以17.5万美金强势领跑2019“天府杯“

2019年11月16日,由360集团、百度、腾讯、阿里巴巴、清华大学与中科院等多家企业和研究机构在成都联合主办了2019“天府杯”国际网络安全大赛暨2019天府国际网络安全高峰论坛。而开幕当日最激荡人...

Syslog 日志分析与异常检测技巧(syslog发送日志配置)

系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Gr...

从Oracle演进看数据库技术的发展(从oracle演进看数据库技术的发展的过程)

数据库技术发展本质上是应用需求驱动与基础架构演进的双向奔赴,如何分析其技术发展的脉络和方向?考虑到oracle数据库仍然是这个领域的王者,以其为例,管中窥豹,对其从Oracle8i到23ai版本的核...

取消回复欢迎 发表评论: