Redis 主从复制原理,设计的真巧妙!
mhr18 2024-11-07 11:03 18 浏览 0 评论
前言
今天继续来看看有关 Redis 的一个问题,主从复制。通常,对于大多数的场景来说,读比写更多,于是对于缓存的水平扩展,其中的一个方式 “主从复制” 就是一个常见的思路。有了主从复制,那么可以扩展出很多从节点来应对大量的读请求。那么问题来了 Redis 的主从复制是如何实现的呢?
PS:本文仅关心复制的机制,不关心主节点下线重新选等等异常情况。
前置知识
- 你需要知道 Redis 的持久化方式,RDB 和 AOF
- Redis 执行命令的基本思路
审题
题目本身不复杂,提问者问这个问题的想法可能会有下面几个方面:
- 了解 Redis 的主从复制机制的话,如果在实际使用过程中出现问题就更容易排查。
- 在设计复制机制的时候需要注意和考虑什么问题。
- 这样的设计是否能应用在别的场景中。
尝试思考
假设你完全没有看过 Redis 源码来思考这个问题,可以从下面几个角度去尝试分析,并猜测答案。
- 首先,想到一个关系户,也就是我们常用的 Mysql,它也有主从复制,如果你了解 binlog 那么可以尝试从这里着手,虽然不同,但思路应该是差不多的。
- 然后,简化问题,主从复制,无非就是将数据发送过去,对方接受保存。
- 不可能每次都复制的是全量数据,那么肯定需要有机制去确保如何每次复制增量的数据。
- 复制的是什么?
- 复制的是数据本身?数据只要变动就将变动的 kv 直接扔给从节点?
- 复制的是执行命令?将客户端执行的命令发送给子节点执行一次?
解决
有了上面的思考,其实实际也就有思路的。首先主从复制肯定有两种情况,一种就是第一次复制,也就是要执行一次全量复制,将主节点的所有数据到复制到从节点上去;另一种就是增量复制,在数据同步之后后续的增量数据保持同步。
全量同步
持久化数据
因为需要全量同步所有数据,我们知道 Redis 数据在内存里面,既然要发送,那势必需要先持久化一次。也就是先 SYNC 一遍,通过方法 startBgsaveForReplication 来完成的。
代码位置在:https://github.com/redis/redis/blob/14f802b360ef52141c83d477ac626cc6622e4eda/src/replication.c#L855
这个问题不大, 就是保存一个 RDB 文件。
发送数据
这个也很不难,就是将数据直接扔过去就好了。
代码位置在:https://github.com/redis/redis/blob/14f802b360ef52141c83d477ac626cc6622e4eda/src/replication.c#L1402
增量同步
后续的任务就是增量同步后续产生的数据了。在猜测时我们想到有两种复制方式,一种是直接复制数据,这种方式复制 RDB 是可行,在全量同步的时候用这个肯定更好,如果同步命令那么从节点还需再执行一次过于复杂和麻烦,还耗时。而对于后续的增量同步来说,肯定是同步命令来的更高效(不过还是得看实际)。
下面就是传播命令的方法:
/* Propagate the specified command (in the context of the specified database id)
* to AOF and Slaves.
*
* flags are an xor between:
* + PROPAGATE_NONE (no propagation of command at all)
* + PROPAGATE_AOF (propagate into the AOF file if is enabled)
* + PROPAGATE_REPL (propagate into the replication link)
*
* This is an internal low-level function and should not be called!
*
* The API for propagating commands is alsoPropagate().
*
* dbid value of -1 is saved to indicate that the called do not want
* to replicate SELECT for this command (used for database neutral commands).
*/
static void propagateNow(int dbid, robj **argv, int argc, int target) {
if (!shouldPropagate(target))
return;
/* This needs to be unreachable since the dataset should be fixed during
* replica pause (otherwise data may be lost during a failover) */
serverAssert(!(isPausedActions(PAUSE_ACTION_REPLICA) &&
(!server.client_pause_in_transaction)));
if (server.aof_state != AOF_OFF && target & PROPAGATE_AOF)
feedAppendOnlyFile(dbid,argv,argc);
if (target & PROPAGATE_REPL)
replicationFeedSlaves(server.slaves,dbid,argv,argc);
}
这个方法就是将增量命令传播给 AOF 和 Slaves,AOF 就是持久化的另一种方式,而 Slaves 就是我们需要同步的从节点了。具体 replicationFeedSlaves 方法就不具体看了。
监控状态
这个其实是我们在猜测的时候漏掉的,想来也是,master 肯定需要知道 slave 的状态,如果连不上了,肯定要处理,在 replication.c 中有这样一个方法:
/* Replication cron function, called 1 time per second. */
void replicationCron(void) {
看名字和注释就秒懂了,每秒执行一次的同步定时任务。
而其中调用了 replicationFeedSlaves 方法,也就是 PING 一下,看看活着没:
replicationFeedSlaves(server.slaves, -1, ping_argv, 1);
可能导致的问题
第一次同步 RDB 时间太长?
如果我们 redis 存放的数据很多,第一次同步会有两个时间,一个是 bgsave 的时间,这个时间其实还好,毕竟平时就是要执行的,而第二个时间就是传输数据的时间,这个时间就取决于带宽了。
不过首先这个操作时,主节点依旧可以被读写,只不过操作均被缓存了,所以倒是不必担心这段时间无法被使用。难就在如果数据过多可能真的会导致一个问题就是,同步->超时->重试,然后不断循环,所以为了避免这样的情况出现,建议 Redis 前往别直接把主机全部内存吃完。通常 maxmemory 设置为 75% 就相对不会出现问题,也不容易 OOM。
当然,有人肯定会问,能不能直接先手动拷贝 RDB 文件来减少同步时间,实际操作过我告诉你,不要手动操作,容易出现意想不到的问题,当出现问题之后,数据还是会不同步,还是会执行重新同步,还不如第一次就手动让程序自己来。
优化
传播 cache
命令在传播的阶段设置了主从同步发送的缓冲区,通过维护一个缓冲区来保证当主节点无需等待,从节点自己凭实力拿就好了,即使有一段时间突然抖动了一下,也没事,缓冲区里面还有,继续同步就行嘞。但当完全超过缓冲区的承受范围,那么还是需要执行一次全量同步来保证数据一致。
无盘加载
之前看代码的时候就注意到了一个参数 repl_diskless_sync 翻译过来就是无盘同步,显然这个优化是 Redis 注意到第一次同步的时候,如果马上写入 RDB 显然是有点慢了,直接 dump 内存肯定会来的更快,所以这就是无盘,也就是不先落盘。
总结
最后用一张图来总结整个过程:
我们看着这个图我们也可以想到,其实这样复制的策略在绝大多数复制的场景中都是适用的,如果实际没有命令这个说法,那就将数据拆分成小块(chunk)来同步。需要注意点和优化点可能 Redis 都帮你想好了,对着抄就可以了。所以,我称为一种设计为 ”单向同步“,那么如果什么是多向同步呢?也就是多个人同时编辑或操作数据,互相同步的策略,此时就需要一些 diff 算法和策略了,你也可以考虑设计看看,看具体会遇到什么问题。
原文链接:https://www.linkinstars.com/post/9ddfbd5e.html
相关推荐
- redis 7.4.3更新!安全修复+性能优化全解析
-
一、Redis是什么?为什么选择它?Redis(RemoteDictionaryServer)是一款开源的高性能内存键值数据库,支持持久化、多数据结构(如字符串、哈希、列表等),广泛应用于缓存、消...
- C# 读写Redis数据库的简单例子
-
CSRedis是一个基于C#的Redis客户端库,它提供了与Redis服务器进行交互的功能。它是一个轻量级、高性能的库,易于使用和集成到C#应用程序中。您可以使用NuGet包管理器或使用以下命令行命令...
- 十年之重修Redis原理
-
弱小和无知并不是生存的障碍,傲慢才是。--------面试者总结Redis可能都用过,但是从来没有理解过,就像一个熟悉的陌生人,本文主要讲述了Redis基本类型的使用、数据结构、持久化、单线程模型...
- 高频L2行情数据Redis存储架构设计(含C++实现代码)
-
一、Redis核心设计原则内存高效:优化数据结构,减少内存占用低延迟访问:单次操作≤0.1ms响应时间数据完整性:完整存储所有L2字段实时订阅:支持多客户端实时数据推送持久化策略:RDB+AOF保障数...
- Magic-Boot开源引擎:零代码玩转企业级开发,效率暴涨!
-
一、项目介绍基于magic-api搭建的快速开发平台,前端采用Vue3+naive-ui最新版本搭建,依赖较少,运行速度快。对常用组件进行封装。利用Vue3的@vue/compiler-sfc单文...
- 项目不行简历拉胯?3招教你从面试陪跑逆袭大厂offer!
-
项目不行简历拉胯?3招教你从面试陪跑逆袭大厂offer!老铁们!是不是每次面试完都感觉自己像被大厂面试官婉拒的渣男?明明刷了三个月题库,背熟八股文,结果一被问项目就支支吾吾,简历写得像大学生课程设计?...
- 谷歌云平台:开发者部署超120个开源包
-
从国外相关报道了解,Google与Bitnami合作为Google云平台增加了一个新的功能,为了方便开发人员快捷部署程序,提供了120余款开源应用程序云平台的支持。这些应用程序其中包括了WordPre...
- 知名互联网公司和程序员都看好的数据库是什么?
-
2017年数据库领域的最大趋势是什么?什么是最热的数据处理技术?学什么数据库最有前途?程序员们普遍不喜欢的数据库是什么?本文都会一一揭秘。大数据时代,数据库的选择备受关注,此前本号就曾揭秘国内知名互联...
- 腾讯云发布云存储MongoDB服务
-
近日,著名安全专家兼Shodan搜索引擎的创建者JohnMatherly发现,目前至少有35000个受影响的MongoDB数据库暴露在互联网上,它们所包含的数据暴露在网络攻击风险之中。据估计,将近6...
- 已跪,Java全能笔记爆火,分布式/开源框架/微服务/性能调优全有
-
前言程序员,立之根本还是技术,一个程序员的好坏,虽然不能完全用技术强弱来判断,但是技术水平一定是基础,技术差的程序员只能CRUD,技术不深的程序员也成不了架构师。程序员对于技术的掌握,除了从了解-熟悉...
- 面试官:举个你解决冲突的例子?别怂!用这个套路……
-
面试官:举个你解决冲突的例子?别怂!用这个套路……最近收到粉丝私信,说被问到:团队技术方案有分歧怎么办?当场大脑宕机……兄弟!这不是送命题,是展示你情商+技术判断力的王炸题!今天教你们3招,用真实案例...
- 面试碰到MongoDB?莫慌,跟面试官这样吹MongoDB 复制集
-
推荐阅读:吊打MySQL:21性能优化实践+学习导图+55面试+笔记+20高频知识点阿里一线架构师分享的技术图谱,进阶加薪全靠它十面字节跳动,依旧空手而归,我该放弃吗?文末会分享一些MongoDB的学...
- SpringBoot集成扩展-访问NoSQL数据库之Redis和MongoDB!
-
与关系型数据库一样,SpringBoot也提供了对NoSQL数据库的集成扩展,如对Redis和MongoDB等数据库的操作。通过默认配置即可使用RedisTemplate和MongoTemplate...
- Java程序员找工作总卡项目关?
-
Java程序员找工作总卡项目关?3招教你用真实经历写出HR抢着要的简历!各位Java老哥,最近刷招聘软件是不是手都划酸了?简历投出去石沉大海,面试邀请却总在飞别人的简历?上周有个兄弟,13年经验投了5...
- Java多租户SaaS系统实现方案
-
嗯,用户问的是Java通过租户id实现的SaaS方案。首先,我需要理解用户的需求。SaaS,也就是软件即服务,通常是指多租户的架构,每个租户的数据需要隔离。用户可能想知道如何在Java中利用租户ID来...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)