挑战Redis单实例内存最大极限,“遭遇”NUMA陷阱!
mhr18 2024-11-07 10:56 36 浏览 0 评论
我们公司的基础架构部有个云Redis平台,其中Redis实例在申请的时候可以自由选择需要的内存的大小。然后就引发了我的一个思考,Redis单实例内存最大申请到多大比较合适?假设母机是64GB内存的物理机,如果不考虑CPU资源的的浪费,我是否可以开一个50G的Redis实例?
于是我在Google上各种搜索,讨论这个问题的人似乎不多。找到唯一感觉靠谱点的答案,那就是单进程分配的内存最好不要超过一个node里的内存总量,否则linux当该node里的内存分配光了的时候,会在自己node里动用硬盘swap,而不是其它node里申请。这即使所谓的numa陷阱,当Redis进入这种状态后会导致性能急剧下降(不只是redis,所有的内存密集型应用如mysql,mongo等都会有类似问题)。
看起来这个解释非常有说服力。于是乎,我就想亲手捕捉一次NUMA陷阱,看看这个家伙究竟什么样。
先聊聊QPI与NUMA
最早在CPU都是单核的时候,用的总线都是FSB总线。经典结构如下图:
到来后来CPU的开发者们发现CPU的频率已经接近物理极限了,没法再有更大程度的提高了。在2003年的时候,CPU的频率就已经达到2个多GB,甚至3个G了。现在你再来看今天的CPU,基本也还是这个频率,没进步多少。摩尔定律失效了,或者说是向另外一个方向发展了。那就是多核化、多CPU化。
刚开始核不多的时候,FSB总线勉强还可以支撑。但是随着CPU越来越多,所有的数据IO都通过这一条总线和内存交换数据,这条FSB就成为了整个计算机系统的瓶颈。举个北京的例子,这就好比进回龙观的京藏高速,刚开始回龙观人口不多的时候,这条高速承载没问题。但是现在回龙观聚集了几十万人了,“总线”还仅有这一条,未免效率太低。
CPU的设计者们很快改变了自己的设计,引入了QPI总线,相应的CPU的结构就叫NMUA架构。下图直观理解
话说NUMA陷阱
NUMA陷阱指的是引入QPI总线后,在计算机系统里可能会存在的一个坑。大致的意思就是如果你的机器打开了numa,那么你的内存即使在充足的情况下,也会使用磁盘上的swap,导致性能低下。原因就是NUMA为了高效,会仅仅只从你的当前node里分配内存,只要当前node里用光了(即使其它node还有),也仍然会启用硬盘swap。
当我第一次听说到这个概念的时候,不禁感叹我运气好,我的Redis实例貌似从来没有掉进这个陷阱里过。那为了以后也别栽坑,赶紧去了解了下我的机器的numa状态:
# numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 12 13 14 15 16 17
node 0 size: 32756 MB
node 0 free: 19642 MB
node 1 cpus: 6 7 8 9 10 11 18 19 20 21 22 23
node 1 size: 32768 MB
node 1 free: 18652 MB
node distances:
node 0 1
0: 10 21
1: 21 10
上面结果说明我们有两个node,node0和node1,分别有12个核心,各有32GB的内存。 再看zone_reclaim_mode,它用来管理当一个内存区域(zone)内部的内存耗尽时,是从其内部进行内存回收还是可以从其他zone进行回收的选项:
- 0 关闭zone_reclaim模式,可以从其他zone或NUMA节点回收内存
- 1 打开zone_reclaim模式,这样内存回收只会发生在本地节点内
- 2 在本地回收内存时,可以将cache中的脏数据写回硬盘,以回收内存
- 4 在本地回收内存时,表示可以用Swap 方式回收内存
# cat /proc/sys/vm/zone_reclaim_mode
1
额,好吧。我的这台机器上的zone_reclaim_mode还真是1,只会在本地节点回收内存。
实践捕捉numa陷阱未遂
那我的好奇心就来了,既然我的单个node节点只有32G,那我部署一个50G的Redis,给它填满数据试试到底会不会发生swap。
实验开始,我先查看了本地总内存,以及各个node的内存剩余状况。
# top
......
Mem: 65961428k total, 26748124k used, 39213304k free, 632832k buffers
Swap: 8388600k total, 0k used, 8388600k free, 1408376k cached
# cat /proc/zoneinfo"
......
Node 0, zone Normal
pages free 4651908
Node 1, zone Normal
pages free 4773314
总内存不用解释,/proc/zoneinfo里包含了node可供应用程序申请的free pages。node1有4651908个页面,4651908*4K=18G的可用内存。
接下来让我们启动redis实例,把其内存上限设置到超过单个node里的内存大小。我这里单node内存大小是32G,我把redis设置成了50G。开始灌入数据。最终数据全部灌完之后,
# top
Mem: 65961428k total, 53140400k used, 12821028k free, 637112k buffers
Swap: 8388600k total, 0k used, 8388600k free, 1072524k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
8356 root 20 0 62.8g 46g 1292 S 0.0 74.5 3:45.34 redis-server
# cat /proc/zoneinfo | grep "pages free"
pages free 3935
pages free 347180
pages free 1402744
pages free 1501670
实验证明,在zone_reclaim_mode为1的情况下,Redis是平均在两个node里申请节点的,并没有固定在某一个cpu里。
莫非是大佬们的忠告错了吗?其实不是,如果不绑定亲和性的话,分配内存是当进程在哪个node上的CPU发起内存申请,就优先在哪个node里分配内存。之所以是平均分配在两个node里,是因为redis-server进程实验中经常会进入主动睡眠状态,醒来后可能CPU就换了。所以基本上,最后看起来内存是平均分配的。如下图,CPU进行了500万次的上下文切换,用top命令看到cpu也是在node0和node1跳来跳去。
# grep ctxt /proc/8356/status
voluntary_ctxt_switches: 5259503
nonvoluntary_ctxt_switches: 1449
改进方法,成功抓获numa陷阱
杀死进程,内存归位
# cat /proc/zoneinfo
Node 0, zone Normal
pages free 7597369
Node 1, zone Normal
pages free 7686732
绑定CPU和内存的亲和性,然后再启动。
numactl --cpunodebind=0 --membind=0 /search/odin/daemon/redis/bin/redis-server /search/odin/daemon/redis/conf/redis.conf
top命令观察到CPU确实一直在node0的节点里。node里的内存也在快速消耗。
# cat /proc/zoneinfo
Node 0, zone Normal
pages free 10697
Node 1, zone Normal
pages free 7686732
看,内存很快就消耗光了。我们再看top命令观察到的swap,很激动地发现,我终于陷入到传说中的numa陷阱了。
Tasks: 603 total, 2 running, 601 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.7%us, 5.4%sy, 0.0%ni, 85.6%id, 8.2%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 65961428k total, 34530000k used, 31431428k free, 319156k buffers
Swap: 8388600k total, 6000792k used, 2387808k free, 777584k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
258 root 20 0 0 0 0 R 72.3 0.0 0:17.18 kswapd0
25934 root 20 0 37.5g 30g 1224 D 71.6 48.7 1:06.09 redis-server
这时候,Redis实际使用的物理内存RES定格到了30g不再上涨,而是开始消耗Swap。
又过了一会儿,Redis被oom给kill了。
结论
通过今天的实验,我们可以发现确实有NUMA陷阱这种东西存在。不过那是我手工通过numactl指令绑定cpu和mem的亲和性后才遭遇的。相信国内绝大部分的线上Redis没有进行这个绑定,所以理论上来单Redis单实例可以使用到整个机器的物理内存。(实践中最好不要这么干,你的大部分内存都绑定到一个redis进程里的话,那其它CPU核就没啥事干了,浪费了CPU的多核计算能力)
扩展
当通过numactl绑定CPU和mem都在一个node里的时候,内存IO不需要经过总线,性能会比较高,你Redis的QPS能力也会上涨。和跨node的内存IO性能对比,可以下面的实例,就是10:21的区别。
# numactl --hardware
......
node distances:
node 0 1
0: 10 21
1: 21 10
你要是对性能有极致的追求,可以试着绑定numa的亲和性玩玩。不过,no作no die,掉到numa陷阱里可别赖我,嘎嘎!
欢迎关注微信公众号:开发内功修炼
相关推荐
- 【预警通报】关于WebLogic存在远程代码执行高危漏洞的预警通报
-
近日,Oracle官方发布了2021年1月关键补丁更新公告CPU(CriticalPatchUpdate),共修复了包括CVE-2021-2109(WeblogicServer远程代码执行漏洞)...
- 医院信息系统突发应急演练记录(医院信息化应急演练)
-
信息系统突发事件应急预案演练记录演练内容信息系统突发事件应急预案演练参与人员信息科参与科室:全院各部门日期xxxx-xx-xx时间20:00至24:00地点信息科记录:xxx1、...
- 一文掌握怎么利用Shell+Python实现完美版的多数据源备份程序
-
简介:在当今数字化时代,无论是企业还是个人,数据的安全性和业务的连续性都是至关重要的。数据一旦丢失,可能会造成无法估量的损失。因此,如何有效地对分布在不同位置的数据进行备份,尤其是异地备份,成为了一个...
- docker搭建系统环境(docker搭建centos)
-
Docker安装(CentOS7)1.卸载旧版Docker#检查已安装版本yumlistinstalled|grepdocker#卸载旧版本yumremove-ydocker.x...
- 基础篇:数据库 SQL 入门教程(sql数据库入门书籍推荐)
-
SQL介绍什么是SQLSQL指结构化查询语言,是用于访问和处理数据库的标准的计算机语言。它使我们有能力访问数据库,可与多种数据库程序协同工作,如MSAccess、DB2、Informix、M...
- Java21杀手级新特性!3行代码性能翻倍
-
导语某券商系统用这招,交易延迟从12ms降到0.8ms!本文揭秘Oracle官方未公开的Record模式匹配+虚拟线程深度优化+向量API神操作,代码量直降70%!一、Record模式匹配(代码量↓8...
- 一文读懂JDK21的虚拟线程(java虚拟线程)
-
概述JDK21已于2023年9月19日发布,作为Oracle标准Java实现的一个LTS版本发布,发布了15想新特性,其中虚拟线程呼声较高。虚拟线程是JDK21中引入的一项重要特性,它是一种轻量级的...
- 效率!MacOS下超级好用的Linux虚拟工具:Lima
-
对于MacOS用户来说,搭建Linux虚拟环境一直是件让人头疼的事。无论是VirtualBox还是商业的VMware,都显得过于笨重且配置复杂。今天,我们要介绍一个轻巧方便的纯命令行Linux虚拟工具...
- 所谓SaaS(所谓三维目标一般都应包括)
-
2010年前后,一个科技媒体的主编写一些关于云计算的概念性问题,就可以作为头版头条了。那时候的云计算,更多的还停留在一些概念性的问题上。而基于云计算而生的SaaS更是“养在深闺人未识”,一度成为被IT...
- ORA-00600 「25027」 「x」报错(报错0xc0000001)
-
问题现象:在用到LOB大对象的业务中,进行数据的插入,失败了,在报警文件中报错:ORA-00600:内部错误代码,参数:[25027],[10],[0],[],[],[],[],[...
- 安卓7源码编译(安卓源码编译环境lunch失败,uname命令找不到)
-
前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...
- 编译安卓源码(编译安卓源码 电脑配置)
-
前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...
- 360 Vulcan Team首战告捷 以17.5万美金强势领跑2019“天府杯“
-
2019年11月16日,由360集团、百度、腾讯、阿里巴巴、清华大学与中科院等多家企业和研究机构在成都联合主办了2019“天府杯”国际网络安全大赛暨2019天府国际网络安全高峰论坛。而开幕当日最激荡人...
- Syslog 日志分析与异常检测技巧(syslog发送日志配置)
-
系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Gr...
- 从Oracle演进看数据库技术的发展(从oracle演进看数据库技术的发展的过程)
-
数据库技术发展本质上是应用需求驱动与基础架构演进的双向奔赴,如何分析其技术发展的脉络和方向?考虑到oracle数据库仍然是这个领域的王者,以其为例,管中窥豹,对其从Oracle8i到23ai版本的核...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle基目录 (50)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (53)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)