为什么Redis 单线程却能支撑高并发?
mhr18 2024-11-04 12:43 16 浏览 0 评论
作者:Draveness
来源:draveness.me/redis-io-multiplexing
最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。
几种 I/O 模型
为什么 Redis 中要使用 I/O 多路复用这种技术呢?
首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。
Blocking I/O
先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个文件描述符(File Descriptor 以下简称 FD)进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。
这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:
阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。
I/O 多路复用
虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。
阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:
在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。
关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;
与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。
Reactor 设计模式
Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)
文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 accept、read、write 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。
虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。
I/O 多路复用模块
I/O 多路复用模块封装了底层的 select、epoll、avport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。
在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:
- static int aeApiCreate(aeEventLoop *eventLoop)
- static int aeApiResize(aeEventLoop *eventLoop, int setsize)
- static void aeApiFree(aeEventLoop *eventLoop)
- static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)
- static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)
- static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)
同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:
// select
typedef struct aeApiState {
fd_set rfds, wfds;
fd_set _rfds, _wfds;
} aeApiState;
// epoll
typedef struct aeApiState {
int epfd;
struct epoll_event *events;
} aeApiState;
这些上下文信息会存储在 eventLoop 的 void *state 中,不会暴露到上层,只在当前子模块中使用。
封装 select 函数
select 可以监控 FD 的可读、可写以及出现错误的情况。
在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:
int fd = /* file descriptor */
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(fd, &rfds)
for ( ; ; ) {
select(fd+1, &rfds, NULL, NULL, NULL);
if (FD_ISSET(fd, &rfds)) {
/* file descriptor `fd` becomes readable */
}
}
- 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;
- 使用 FD_SET 将 fd 加入 rfds;
- 调用 select 方法监控 rfds 中的 FD 是否可读;
- 当 select 返回时,检查 FD 的状态并完成对应的操作。
而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds:
static int aeApiCreate(aeEventLoop *eventLoop) {
aeApiState *state = zmalloc(sizeof(aeApiState));
if (!state) return -1;
FD_ZERO(&state->rfds);
FD_ZERO(&state->wfds);
eventLoop->apidata = state;
return 0;
}
而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
aeApiState *state = eventLoop->apidata;
if (mask & AE_READABLE) FD_SET(fd,&state->rfds);
if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);
return 0;
}
整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired 数组中,并返回事件的个数:
封装 epoll 函数
Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd:
static int aeApiCreate(aeEventLoop *eventLoop) {
aeApiState *state = zmalloc(sizeof(aeApiState));
if (!state) return -1;
state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);
if (!state->events) {
zfree(state);
return -1;
}
state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */
if (state->epfd == -1) {
zfree(state->events);
zfree(state);
return -1;
}
eventLoop->apidata = state;
return 0;
}
在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
aeApiState *state = eventLoop->apidata;
struct epoll_event ee = {0}; /* avoid valgrind warning */
/* If the fd was already monitored for some event, we need a MOD
* operation. Otherwise we need an ADD operation. */
int op = eventLoop->events[fd].mask == AE_NONE ?
EPOLL_CTL_ADD : EPOLL_CTL_MOD;
ee.events = 0;
mask |= eventLoop->events[fd].mask; /* Merge old events */
if (mask & AE_READABLE) ee.events |= EPOLLIN;
if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;
ee.data.fd = fd;
if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;
return 0;
}
由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:
typedef union epoll_data {
void *ptr;
int fd; /* 文件描述符 */
uint32_t u32;
uint64_t u64;
} epoll_data_t;
struct epoll_event {
uint32_t events; /* Epoll 事件 */
epoll_data_t data;
};
其中保存了发生的 epoll 事件(EPOLLIN、EPOLLOUT、EPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。
aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:
子模块的选择
因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:
#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else
#ifdef HAVE_EPOLL
#include "ae_epoll.c"
#else
#ifdef HAVE_KQUEUE
#include "ae_kqueue.c"
#else
#include "ae_select.c"
#endif
#endif
#endif
因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:
Redis 会优先选择时间复杂度为 $O(1)$ 的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。
但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 $O(n)$,并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。
总结
Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。
整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。
- 上一篇:一文详解高并发以及提升系统并发能力
- 下一篇:Redis高并发缓存架构性能优化实战
相关推荐
- B站收藏视频失效?mybili 收藏夹备份神器完整部署指南
-
本内容来源于@什么值得买APP,观点仅代表作者本人|作者:羊刀仙很多B站用户都有过类似经历:自己精心收藏的视频突然“消失”,点开一看不是“已被删除”,就是“因UP主设置不可见”。而B站并不会主动通知...
- 中间件推荐初始化配置
-
Redis推荐初始化配置bind0.0.0.0protected-modeyesport6379tcp-backlog511timeout300tcp-keepalive300...
- Redis中缓存穿透问题与解决方法
-
缓存穿透问题概述在Redis作为缓存使用时,缓存穿透是常见问题。正常查询流程是先从Redis缓存获取数据,若有则直接使用;若没有则去数据库查询,查到后存入缓存。但当请求的数据在缓存和数据库中都...
- 后端开发必看!Redis 哨兵机制如何保障系统高可用?
-
你是否曾在项目中遇到过Redis主服务器突然宕机,导致整个业务系统出现数据读取异常、响应延迟甚至服务中断的情况?面对这样的突发状况,作为互联网大厂的后端开发人员,如何快速恢复服务、保障系统的高可用...
- Redis合集-大Key处理建议
-
以下是Redis大Key问题的全流程解决方案,涵盖检测、处理、优化及预防策略,结合代码示例和最佳实践:一、大Key的定义与风险1.大Key判定标准数据类型大Key阈值风险场景S...
- 深入解析跳跃表:Redis里的"老六"数据结构,专治各种不服
-
大家好,我是你们的码农段子手,今天要给大家讲一个Redis世界里最会"跳科目三"的数据结构——跳跃表(SkipList)。这货表面上是个青铜,实际上是个王者,连红黑树见了都要喊声大哥。...
- Redis 中 AOF 持久化技术原理全解析,看完你就懂了!
-
你在使用Redis的过程中,有没有担心过数据丢失的问题?尤其是在服务器突然宕机、意外断电等情况发生时,那些还没来得及持久化的数据,是不是让你夜不能寐?别担心,Redis的AOF持久化技术就是...
- Redis合集-必备的几款运维工具
-
Redis在应用Redis时,经常会面临的运维工作,包括Redis的运行状态监控,数据迁移,主从集群、切片集群的部署和运维。接下来,从这三个方面,介绍一些工具。先来学习下监控Redis实时...
- 别再纠结线程池大小 + 线程数量了,没有固定公式的!
-
我们在百度上能很轻易地搜索到以下线程池设置大小的理论:在一台服务器上我们按照以下设置CPU密集型的程序-核心数+1I/O密集型的程序-核心数*2你不会真的按照这个理论来设置线程池的...
- 网络编程—IO多路复用详解
-
假如你想了解IO多路复用,那本文或许可以帮助你本文的最大目的就是想要把select、epoll在执行过程中干了什么叙述出来,所以具体的代码不会涉及,毕竟不同语言的接口有所区别。基础知识IO多路复用涉及...
- 5分钟学会C/C++多线程编程进程和线程
-
前言对线程有基本的理解简单的C++面向过程编程能力创造单个简单的线程。创造单个带参数的线程。如何等待线程结束。创造多个线程,并使用互斥量来防止资源抢占。会使用之后,直接跳到“汇总”,复制模板来用就行...
- 尽情阅读,技术进阶,详解mmap的原理
-
1.一句话概括mmapmmap的作用,在应用这一层,是让你把文件的某一段,当作内存一样来访问。将文件映射到物理内存,将进程虚拟空间映射到那块内存。这样,进程不仅能像访问内存一样读写文件,多个进程...
- C++11多线程知识点总结
-
一、多线程的基本概念1、进程与线程的区别和联系进程:进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程;线程:是运行中的实际的任务执行者。可以说,进程中包含了多...
- 微服务高可用的2个关键技巧,你一定用得上
-
概述上一篇文章讲了一个朋友公司使用SpringCloud架构遇到问题的一个真实案例,虽然不是什么大的技术问题,但如果对一些东西理解的不深刻,还真会犯一些错误。这篇文章我们来聊聊在微服务架构中,到底如...
- Java线程间如何共享与传递数据
-
1、背景在日常SpringBoot应用或者Java应用开发中,使用多线程编程有很多好处,比如可以同时处理多个任务,提高程序的并发性;可以充分利用计算机的多核处理器,使得程序能够更好地利用计算机的资源,...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)