百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

「SpringBoot系列」Redis位图使用姿势及应用场景

mhr18 2024-10-30 02:39 47 浏览 0 评论

【SpringBoot DB 系列】Redis 高级特性之 Bitmap 使用姿势及应用场景介绍

前面介绍过 redis 的五种基本数据结构,如 String,List, Set, ZSet, Hash,这些属于相对常见了;在这些基本结果之上,redis 还提供了一些更高级的功能,如 geo, bitmap, hyperloglog,pub/sub,本文将主要介绍 Bitmap 的使用姿势以及其适用场景,主要知识点包括

  • bitmap 基本使用
  • 日活统计应用场景中 bitmap 使用姿势
  • 点赞去重应用场景中 bitmap 使用姿势
  • 布隆过滤器 bloomfilter 基本原理及体验 case

I. 基本使用

1. 配置

我们使用 SpringBoot 2.2.1.RELEASE来搭建项目环境,直接在pom.xml中添加 redis 依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

如果我们的 redis 是默认配置,则可以不额外添加任何配置;也可以直接在application.yml配置中,如下

spring:
  redis:
    host: 127.0.0.1
    port: 6379
    password:

2. 使用姿势

bitmap 主要就三个操作命令,setbitgetbit以及 bitcount

a. 设置标记

setbit,主要是指将某个索引,设置为 1(设置 0 表示抹去标记),基本语法如下

# 请注意这个index必须是数字,后面的value必须是0/1
setbit key index 0/1

对应的 SpringBoot 中,借助 RestTemplate 可以比较容易的实现,通常有两种写法,都可以

@Autowired
private StringRedisTemplate redisTemplate;

/**
 * 设置标记位
 *
 * @param key
 * @param offset
 * @param tag
 * @return
 */
public Boolean mark(String key, long offset, boolean tag) {
    return redisTemplate.opsForValue().setBit(key, offset, tag);
}

public Boolean mark2(String key, long offset, boolean tag) {
    return redisTemplate.execute(new RedisCallback<Boolean>() {
        @Override
        public Boolean doInRedis(RedisConnection connection) throws DataAccessException {
            return connection.setBit(key.getBytes(), offset, tag);
        }
    });
}

上面两种写法的核心区别,就是 key 的序列化问题,第一种写法使用默认的 jdk 字符串序列化,和后面的getBytes()会有一些区别,关于这个,有兴趣的小伙伴可以看一下我之前的博文: RedisTemplate 配置与使用#序列化问题

b. 判断存在与否

getbit key index,如果返回 1,表示存在否则不存在

/**
 * 判断是否标记过
 *
 * @param key
 * @param offest
 * @return
 */
public Boolean container(String key, long offest) {
    return redisTemplate.opsForValue().getBit(key, offest);
}

c. 计数

bitcount key,统计和

/**
 * 统计计数
 *
 * @param key
 * @return
 */
public long bitCount(String key) {
    return redisTemplate.execute(new RedisCallback<Long>() {
        @Override
        public Long doInRedis(RedisConnection redisConnection) throws DataAccessException {
            return redisConnection.bitCount(key.getBytes());
        }
    });
}

3. 应用场景

前面的基本使用比较简单,在介绍 String 数据结构的时候也提过,我们重点需要关注的是 bitmap 的使用场景,它可以干嘛用,什么场景下使用它会有显著的优势

  • 日活统计
  • 点赞
  • bloomfilter

上面三个场景虽有相似之处,但实际的应用场景还是些许区别,接下来我们逐一进行说明

a. 日活统计

统计应用或网站的日活,这个属于比较常见的 case 了,如果是用 redis 来做这个事情,首先我们最容易想到的是 Hash 结构,一般逻辑如下

  • 根据日期,设置 key,如今天为 2020/10/13, 那么 key 可以为 app_20_10_13
  • 其次当用户访问时,设置 field 为 userId, value 设置为 true
  • 判断日活则是统计 map 的个数hlen app_20_10_13

上面这个逻辑有毛病么?当然没有问题,但是想一想,当我们的应用做的很 nb 的时候,每天的日活都是百万,千万级时,这个内存开销就有点吓人了

接下来我们看一下 bitmap 可以怎么做

  • 同样根据日期设置 key
  • 当用户访问时,index 设置为 userId,setbit app_20_10_13 uesrId 1
  • 日活统计 bitcount app_20_10_13

简单对比一下上面两种方案

当数据量小时,且 userid 分布不均匀,小的为个位数,大的几千万,上亿这种,使用 bitmap 就有点亏了,因为 userId 作为 index,那么 bitmap 的长度就需要能容纳最大的 userId,但是实际日活又很小,说明 bitmap 中间有大量的空白数据

反之当数据量很大时,比如百万/千万,userId 是连续递增的场景下,bitmap 的优势有两点:1.存储开销小, 2.统计总数快

c. 点赞

点赞的业务,最主要的一点是一个用户点赞过之后,就不能继续点赞了(当然某些业务场景除外),所以我们需要知道是否可以继续点赞

上面这个 hash 当然也可以实现,我们这里则主要讨论一下 bitmap 的实现逻辑

  • 比如我们希望对一个文章进行点赞统计,那么我们根据文章 articleId 来生成 redisKey=like_1121,将 userId 作为 index
  • 首先是通过getbit like_1121 userId 来判断是否点赞过,从而限制用户是否可以操作

Hash 以及 bitmap 的选择和上面的考量范围差不多

d. 布隆过滤器 bloomfilter

布隆过滤器可谓是大名鼎鼎了,我们这里简单的介绍一下这东西是啥玩意

  • 底层存储为一个 bitmap
  • 当来一个数据时,经过 n 个 hash 函数,得到 n 个数值
  • 将 hash 得到的 n 个数值,映射到 bitmap,标记对应的位置为 1

如果来一个数据,通过 hash 计算之后,若这个 n 个值,对应的 bitmap 都是 1,那么表示这个数据可能存在;如果有一个不为 1,则表示这个数据一定不存在

请注意:不存在时,是一定不存在;存在时,则不一定

从上面的描述也知道,bloomfilter 的底层数据结构就是 bitmap,当然它的关键点在 hash 算法;根据它未命中时一定不存在的特性,非常适用于缓存击穿的问题解决

体验说明

Redis 的布隆过滤器主要针对>=4.0,通过插件的形式提供,项目源码地址为: https://github.com/RedisBloom/RedisBloom,下面根据 readme 的说明,简单的体验一下 redis 中 bloomfilter 的使用姿势

# docker 方式安装
docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest

# 通过redis-cli方式访问
docker exec -it redis-redisbloom bash

# 开始使用
# redis-cli
127.0.0.1:6379> keys *
(empty array)
127.0.0.1:6379> bf.add newFilter hello
(integer) 1
127.0.0.1:6379> bf.exists newFilter hello
(integer) 1
127.0.0.1:6379> bf.exists newFilter hell
(integer) 0

bloomfilter 的使用比较简单,主要是两个命令bf.add添加元素,bf.exists判断是否存在,请注意它没有删除哦

4. 小结

bitmap 位图属于一个比较精巧的数据结构,通常在数据量大的场景下,会有出现的表现效果;redis 本身基于 String 数据结构来实现 bitmap 的功能支持,使用方式比较简单,基本上就下面三个命令

  • setbit key index 1/0: 设置
  • getbit key index: 判断是否存在
  • bitcount key: 计数统计

本文也给出了 bitmap 的三个常见的应用场景

  • 日活统计:主要借助bitcount来获取总数(后面会介绍,在日活十万百万以上时,使用 hyperLogLog 更优雅)
  • 点赞: 主要借助setbit/getbit来判断用户是否赞过,从而实现去重
  • bloomfilter: 基于 bitmap 实现的布隆过滤器,广泛用于去重的业务场景中(如缓存穿透,爬虫 url 去重等)

总的来讲,bitmap 属于易用,巧用的数据结构,用得好即能节省内存也可以提高效率,用得不好貌似也不会带来太大的问题

II. 其他

0. 项目

系列博文

  • 【DB 系列】Redis 之管道 Pipelined 使用姿势
  • 【DB 系列】Redis 集群环境配置
  • 【DB 系列】借助 Redis 搭建一个简单站点统计服务(应用篇)
  • 【DB 系列】借助 Redis 实现排行榜功能(应用篇)
  • 【DB 系列】Redis 之 ZSet 数据结构使用姿势
  • 【DB 系列】Redis 之 Set 数据结构使用姿势
  • 【DB 系列】Redis 之 Hash 数据结构使用姿势
  • 【DB 系列】Redis 之 List 数据结构使用姿势
  • 【DB 系列】Redis 之 String 数据结构的读写
  • 【DB 系列】Redis 之 Jedis 配置
  • 【DB 系列】Redis 之基本配置

工程源码

  • 工程:https://github.com/liuyueyi/spring-boot-demo
  • 项目源码: https://github.com/liuyueyi/spring-boot-demo/tree/master/spring-boot/122-redis-template

1. 一灰灰 Blog

尽信书则不如,以上内容,纯属一家之言,因个人能力有限,难免有疏漏和错误之处,如发现 bug 或者有更好的建议,欢迎批评指正,不吝感激

下面一灰灰的个人博客,记录所有学习和工作中的博文,欢迎大家前去逛逛

  • 一灰灰 Blog 个人博客 https://blog.hhui.top
  • 一灰灰 Blog-Spring 专题博客 http://spring.hhui.top

相关推荐

如何检查 Linux 服务器是物理服务器还是虚拟服务器?

在企业级运维、故障排查和性能调优过程中,准确了解服务器的运行环境至关重要。无论是物理机还是虚拟机,都存在各自的优势与限制。在很多场景下,尤其是当你继承一台服务器而不清楚底层硬件细节时,如何快速辨识它是...

第四节 Windows 系统 Docker 安装全指南

一、Docker在Windows上的运行原理(一)架构限制说明Docker本质上依赖Linux内核特性(如Namespaces、Cgroups等),因此在Windows系统上无法直...

C++ std:shared_ptr自定义allocator引入内存池

当C++项目里做了大量的动态内存分配与释放,可能会导致内存碎片,使系统性能降低。当动态内存分配的开销变得不容忽视时,一种解决办法是一次从操作系统分配一块大的静态内存作为内存池进行手动管理,堆对象内存分...

Activiti 8.0.0 发布,业务流程管理与工作流系统

Activiti8.0.0现已发布。Activiti是一个业务流程管理(BPM)和工作流系统,适用于开发人员和系统管理员。其核心是超快速、稳定的BPMN2流程引擎。Activiti可以...

MyBatis动态SQL的5种高级玩法,90%的人只用过3种

MyBatis动态SQL在日常开发中频繁使用,但大多数开发者仅掌握基础标签。本文将介绍五种高阶技巧,助你解锁更灵活的SQL控制能力。一、智能修剪(Trim标签)应用场景:动态处理字段更新,替代<...

Springboot数据访问(整合Mybatis Plus)

Springboot整合MybatisPlus1、创建数据表2、引入maven依赖mybatis-plus-boot-starter主要引入这个依赖,其他相关的依赖在这里就不写了。3、项目结构目录h...

盘点金州勇士在奥克兰13年的13大球星 满满的全是...

见证了两个月前勇士与猛龙那个史诗般的系列赛后,甲骨文球馆正式成为了历史。那个大大的红色标志被一个字母一个字母地移除,在周四,一切都成为了过去式。然而这座,别名为“Roaracle”(译注:Roar怒吼...

Mybatis入门看这一篇就够了(mybatis快速入门)

什么是MyBatisMyBatis本是apache的一个开源项目iBatis,2010年这个项目由apachesoftwarefoundation迁移到了googlecode,并且改名为M...

Springboot数据访问(整合druid数据源)

Springboot整合druid数据源基本概念SpringBoot默认的数据源是:2.0之前:org.apache.tomcat.jdbc.pool.DataSource2.0及之后:com.z...

Linux 中的 &quot;/etc/profile.d&quot; 目录有什么作用 ?

什么是/etc/profile.d/目录?/etc/profile.d/目录是Linux系统不可或缺的一部分保留配置脚本。它与/etc/profile文件相关联,这是一个启动脚本,该脚...

企业数据库安全管理规范(企业数据库安全管理规范最新版)

1.目的为规范数据库系统安全使用活动,降低因使用不当而带来的安全风险,保障数据库系统及相关应用系统的安全,特制定本数据库安全管理规范。2.适用范围本规范中所定义的数据管理内容,特指存放在信息系统数据库...

Oracle 伪列!这些隐藏用法你都知道吗?

在Oracle数据库中,有几位特殊的“成员”——伪列,它们虽然不是表中真实存在的物理列,但却能在数据查询、处理过程中发挥出意想不到的强大作用。今天给大家分享Oracle伪列的使用技巧,无论...

Oracle 高效处理数据的隐藏神器:临时表妙用

各位数据库搬砖人,在Oracle的代码世界里闯荡,处理复杂业务时,是不是总被数据“搅得头大”?今天给大家安利一个超实用的隐藏神器——临时表!当你需要临时存储中间计算结果,又不想污染正式数据表...

Oracle 数据库查询:多表查询(oracle多表关联查询)

一、多表查询基础1.JOIN操作-INNERJOIN:返回两个表中满足连接条件的匹配行,不保留未匹配数据。SELECTa.emp_id,b.dept_nameFROMempl...

一文掌握怎么利用Shell+Python实现多数据源的异地备份程序

简介:在信息化时代,数据安全和业务连续性已成为企业和个人用户关注的焦点。无论是网站数据、数据库、日志文件,还是用户上传的文档、图片等,数据一旦丢失,损失难以估量。尤其是当数据分布在多个不同的目录、服务...

取消回复欢迎 发表评论: