Redis哨兵机制原理浅析(redis哨兵机制配置)
mhr18 2024-10-26 10:54 33 浏览 0 评论
一、前言
上一篇文章Redis主从复制原理中简要地说明了主从复制的一个基本原理,包含全量复制、复制积压缓冲区与增量复制等内容,有兴趣的同学可以先看下。
利用主从复制,可以实现读写分离、数据备份等功能。但如果主库宕机后,需要运维人员手动地将一个从库提升为新主库,并将其他从库slaveof新主库,以此来实现故障恢复。
因此, 主从模式的一个缺点,就在于无法实现自动化地故障恢复 。Redis后来引入了哨兵机制,哨兵机制大大提升了系统的高可用性。
二、什么是哨兵
哨兵,就是站岗放哨的,时刻监控周围的一举一动,在第一时间发现敌情并发出及时的警报。
Redis中的哨兵(Sentinel), 则是一个特殊的Redis实例 ,不过它并不存储数据。也就是说,哨兵在启动时,不会去加载RDB文件。
关于Redis的持久化,可以参考我的另外一篇文章 谈谈Redis的持久化——AOF日志与RDB快照
上图就是一个典型的哨兵架构,由数据节点与哨兵节点构成,通常会部署多个哨兵节点。
哨兵主要具有三个作用, 监控、选主与通知 。
监控:哨兵会利用心跳机制,周期性不断地检测主库与从库的存活性
选主:哨兵检测到主库宕机后,选择一个从库将之切换为新主库
通知:哨兵会将新主库的地址通知到所有从库,使得所有从库与旧主库slaveof新主库,也会将新主库的地址通知到客户端上
我会在下文详细讲一下监控与选主的过程
三、监控
哨兵系统是通过3个定时任务,来完成对主库、从库与哨兵之间的探活。
哨兵如何拿到从库地址
首先我们会在配置文件中配置主库地址,这样哨兵在启动后,会以 每隔10秒 的频率向主库发送info命令,从而获得当前的主从拓扑关系,这样就拿到了所有从库的地址。
哨兵如何感知到其他哨兵的存在
接着 每隔2秒 ,会使用pub/sub(发布订阅)机制,在主库上的_sentinel_:hello的频道上发布消息,消息内容包括哨兵自己的ip、port、runid与主库的配置。
每个哨兵都会订阅该频道,在该频道上发布与消费消息,从而实现哨兵之间的互相感知。
哨兵是如何实现对节点的监控
利用启动配置与info命令可以获取到主从库地址,利用发布订阅可以感知到其余的哨兵节点。
在此基础上,哨兵会 每隔1秒 向主库、从库与其他哨兵节点发送PING命令,因此来进行互相探活。
主观下线与客观下线
当某个哨兵在 down-after-milliseconds(默认是30秒) 配置的连续时间内,仍然没有收到主库的正确响应,则当前哨兵会认为主库 主观下线 ,并将其标记为sdown(subjective down)
为了避免当前哨兵对主库的误判,因此这个时候还需要参考其他哨兵的意见。
接着当前哨兵会向其他哨兵发送 sentinel is-master-down-by-addr 命令, 如果有半数以上(由quorum参数决定)的哨兵认为主库确实处于主观下线状态,则当前哨兵认为主库客观下线 ,标记为odown(objective down)
四、选主
一旦某个主库被认定为客观下线时,这个时候需要进行哨兵选举,选举出一个领导者哨兵,来完成主从切换的过程。
哨兵选举
哨兵A在向其他哨兵发送 sentinel is-master-down-by-addr 命令时,同时要求其他哨兵同意将其设置为Leader,也就是想获得其他哨兵的投票。
在每一轮选举中,每个哨兵仅有一票。投票遵循先来先到的原则,如果某个哨兵没有投给别人,就会投给哨兵A。
首先获得半数以上投票的哨兵,将被选举称为Leader。
这里的哨兵选举,采用的是Raft算法。这里不对Raft做详细的探讨,有兴趣的同学,可以参考我的另外一篇文章 22张图,带你入门分布式一致性算法Raft
该文章采用大量的图例,相信你可以从中学习到全新的知识,从而打开分布式一致性算法的大门,大伙们记得等我搞完Paxos与Zab。
过半投票机制也常用于很多算法中,例如RedLock,在半数以上的节点上加锁成功,才代表申请到了分布式锁,具体可参考这篇文章的最后 我用了上万字,走了一遍Redis实现分布式锁的坎坷之路,从单机到主从再到多实例,原来会发生这么多的问题
在Zookeeper选举中,同样也用到了过半投票机制,在这篇文章中 面试官:能给我画个Zookeeper选举的图吗? 我从源码角度分析了Zookeeper选举的过程。
故障恢复
在选举到领导者哨兵后,将由该哨兵完成故障恢复工作。
故障恢复分为以下两步:
- 首先需要在各个从库中,选出一个健康的且数据最新的从库出来。
- 将该从库提升为新主库,即执行slaveof no one,其他从节点slaveof新主库。
详细说一下第一步,挑选是有条件的。首先要过滤出不健康的节点,再按某种规则排序,最后取第一个从库,我们直接从源码入手:
sentinelRedisInstance *sentinelSelectSlave(sentinelRedisInstance *master) {
sentinelRedisInstance **instance =
zmalloc(sizeof(instance[0])*dictSize(master->slaves));
sentinelRedisInstance *selected = NULL;
int instances = 0;
mstime_t max_master_down_time = 0;
if (master->flags & SRI_S_DOWN)
max_master_down_time += mstime() - master->s_down_since_time;
max_master_down_time += master->down_after_period * 10;
di = dictGetIterator(master->slaves);
while((de = dictNext(di)) != NULL) {
sentinelRedisInstance *slave = dictGetVal(de);
mstime_t info_validity_time;
//处于主观下线与客观下线的状态
if (slave->flags & (SRI_S_DOWN|SRI_O_DOWN)) continue;
//断开连接
if (slave->link->disconnected) continue;
//5秒内没有回应哨兵的ping命令
if (mstime() - slave->link->last_avail_time > SENTINEL_PING_PERIOD*5) continue;
//优先级为0
if (slave->slave_priority == 0) continue;
//没在3秒或5秒(依据主库状态)内完成对info命令的回应
if (mstime() - slave->info_refresh > info_validity_time) continue;
//与主库的断开时间,超过max_master_down_time
if (slave->master_link_down_time > max_master_down_time) continue;
//健康的节点加入到instance数组中
instance[instances++] = slave;
}
//按照某种规则进行快速排序
qsort(instance,instances,sizeof(sentinelRedisInstance*),compareSlavesForPromotion);
//选取第一个
selected = instance[0];
return selected;
}
int compareSlavesForPromotion(const void *a, const void *b) {
sentinelRedisInstance **sa = (sentinelRedisInstance **)a,
**sb = (sentinelRedisInstance **)b;
char *sa_runid, *sb_runid;
//首先比较优先级,谁的优先级越小(除了0),就选谁
if ((*sa)->slave_priority != (*sb)->slave_priority)
return (*sa)->slave_priority - (*sb)->slave_priority;
//当优先级一样时,比较复制偏移量。谁的偏移量大,就选谁
if ((*sa)->slave_repl_offset > (*sb)->slave_repl_offset) {
return -1; /* a < b */
} else if ((*sa)->slave_repl_offset < (*sb)->slave_repl_offset) {
return 1; /* a > b */
}
//优先级与复制偏移量一致时,比较runid
sa_runid = (*sa)->runid;
sb_runid = (*sb)->runid;
//低版本的Redis,在info命令中不存在runid,因此可能为null
//为null的runid,认为它比任何runid都大
if (sa_runid == NULL && sb_runid == NULL) return 0;
else if (sa_runid == NULL) return 1; /* a > b */
else if (sb_runid == NULL) return -1; /* a < b */
//按照字母顺序排序,谁靠前,则选谁
return strcasecmp(sa_runid, sb_runid);
}
因此,以下从库会被过滤出:
- 主观下线、客观下线或断线
- 没在5秒内完成对哨兵ping命令的回应
- priority=0
- 没在3秒或5秒内(由主库状态决定)内完成对info命令的回应
- 与主库的断开时间,超过max_master_down_time
剩下的节点,就是健康的节点,此时再执行一次快速排序,排序的规则如下:
- 比较优先级(priority),谁的优先级越小(除了0),就选谁
- 比较复制偏移量。谁的偏移量大,就选谁
- 比较runid,按照字母顺序排序。谁靠前,则选谁
五、总结
本文算是Redis哨兵的一个入门文章,主要讲了哨兵的作用,例如监控、选主和通知。
在Redis读写分离的情况下,使用哨兵可以很轻松地做到故障恢复,提升了整体的可用性。
但哨兵无法解决Redis单机写的瓶颈,这就需要引入集群模式,相应的文章也被列为明年的写作计划中。
相关推荐
- 使用 Docker 部署 Java 项目(通俗易懂)
-
前言:搜索镜像的网站(推荐):DockerDocs1、下载与配置Docker1.1docker下载(这里使用的是Ubuntu,Centos命令可能有不同)以下命令,默认不是root用户操作,...
- Spring Boot 3.3.5 + CRaC:从冷启动到秒级响应的架构实践与踩坑实录
-
去年,我们团队负责的电商订单系统因扩容需求需在10分钟内启动200个Pod实例。当运维组按下扩容按钮时,传统SpringBoot应用的冷启动耗时(平均8.7秒)直接导致流量洪峰期出现30%的请求超时...
- 《github精选系列》——SpringBoot 全家桶
-
1简单总结1SpringBoot全家桶简介2项目简介3子项目列表4环境5运行6后续计划7问题反馈gitee地址:https://gitee.com/yidao620/springbo...
- Nacos简介—1.Nacos使用简介
-
大纲1.Nacos的在服务注册中心+配置中心中的应用2.Nacos2.x最新版本下载与目录结构3.Nacos2.x的数据库存储与日志存储4.Nacos2.x服务端的startup.sh启动脚...
- spring-ai ollama小试牛刀
-
序本文主要展示下spring-aiollama的使用示例pom.xml<dependency><groupId>org.springframework.ai<...
- SpringCloud系列——10Spring Cloud Gateway网关
-
学习目标Gateway是什么?它有什么作用?Gateway中的断言使用Gateway中的过滤器使用Gateway中的路由使用第1章网关1.1网关的概念简单来说,网关就是一个网络连接到另外一个网络的...
- Spring Boot 自动装配原理剖析
-
前言在这瞬息万变的技术领域,比了解技术的使用方法更重要的是了解其原理及应用背景。以往我们使用SpringMVC来构建一个项目需要很多基础操作:添加很多jar,配置web.xml,配置Spr...
- 疯了!Spring 再官宣惊天大漏洞
-
Spring官宣高危漏洞大家好,我是栈长。前几天爆出来的Spring漏洞,刚修复完又来?今天愚人节来了,这是和大家开玩笑吗?不是的,我也是猝不及防!这个玩笑也开的太大了!!你之前看到的这个漏洞已...
- 「架构师必备」基于SpringCloud的SaaS型微服务脚手架
-
简介基于SpringCloud(Hoxton.SR1)+SpringBoot(2.2.4.RELEASE)的SaaS型微服务脚手架,具备用户管理、资源权限管理、网关统一鉴权、Xss防跨站攻击、...
- SpringCloud分布式框架&分布式事务&分布式锁
-
总结本文承接上一篇SpringCloud分布式框架实践之后,进一步实践分布式事务与分布式锁,其中分布式事务主要是基于Seata的AT模式进行强一致性,基于RocketMQ事务消息进行最终一致性,分布式...
- SpringBoot全家桶:23篇博客加23个可运行项目让你对它了如指掌
-
SpringBoot现在已经成为Java开发领域的一颗璀璨明珠,它本身是包容万象的,可以跟各种技术集成。本项目对目前Web开发中常用的各个技术,通过和SpringBoot的集成,并且对各种技术通...
- 开发好物推荐12之分布式锁redisson-sb
-
前言springboot开发现在基本都是分布式环境,分布式环境下分布式锁的使用必不可少,主流分布式锁主要包括数据库锁,redis锁,还有zookepper实现的分布式锁,其中最实用的还是Redis分...
- 拥抱Kubernetes,再见了Spring Cloud
-
相信很多开发者在熟悉微服务工作后,才发现:以为用SpringCloud已经成功打造了微服务架构帝国,殊不知引入了k8s后,却和CloudNative的生态发展脱轨。从2013年的...
- Zabbix/J监控框架和Spring框架的整合方法
-
Zabbix/J是一个Java版本的系统监控框架,它可以完美地兼容于Zabbix监控系统,使得开发、运维等技术人员能够对整个业务系统的基础设施、应用软件/中间件和业务逻辑进行全方位的分层监控。Spri...
- SpringBoot+JWT+Shiro+Mybatis实现Restful快速开发后端脚手架
-
作者:lywJee来源:cnblogs.com/lywJ/p/11252064.html一、背景前后端分离已经成为互联网项目开发标准,它会为以后的大型分布式架构打下基础。SpringBoot使编码配置...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)