跟随杠精的视角一起来了解Redis的主从复制
mhr18 2024-10-25 12:40 30 浏览 0 评论
不想弹好吉他的撸铁狗,都不是好的程序猿
虽然说单机的Redis性能很好,也有完备的持久化机制,那如果你的业务体量真的很大,超过了单机能够承载的上限了怎么办?不做任何处理的话Redis挂了怎么办?带着这个问题开始我们今天的主题-「Redis高可用」,由于篇幅原因,本章就只聊聊主从复制。
为啥要先从主从复制开始聊,是因为「主从复制」可以说是整个Redis高可用实现的基石,你可以先有这么一个概念,至于具体为什么是基石,这个后面聊到Sentinel和Redis集群的时候会说到。
首先我们需要知道,对于我们开发人员来说,为什么需要「主从架构」?一个Redis实例难道不行吗?
其实除了开篇提到的负载超过了Redis单机能够处理的上限,还有一种情况Redis也无法保证自身的高可用性。那就是即便Redis能够扛住所有流量,但是如果这个Redis进程所在的机器挂了呢?请求会直接调转枪口,大量的流量会瞬间把你的DB打挂,然后你就可以背个P0,打包回家了。
而且,假设你对Redis的需求真的超过了单机的容量,你怎么办?搞多台独立的Redis实例吗?那如果用户缓存的数据这一次存在了实例一,下一次如果用户又访问到了实例二,难道又要去走一遍DB吗?除非你能够维护好用户和Redis实例的对应关系(但是通常这样的逻辑比较复杂),否则部署多个Redis实例也就失去了它的意义,没有办法做到横向扩展了。
那换成主从架构就能解决这个问题吗?
我们可以从一个图来直观的了解一下。
Redis主从复制
在主从同步中,我们将节点的角色划分为master和slave,形成「一主多从」。slave对外提供读操作,而master负责写操作,形成一个读写分离的架构,这样一来就能够承载更多的业务请求。
在多数的业务场景下,对于Redis的「读操作」都要多于「写操作」,所以当读请求量特别大的时候,我们可以通过增加slave节点来使Redis扛住更多的流量。
你这不行啊老弟,你往master写数据,那我要是连接到slave上去了,不就拿不到之前的数据了?
我这个小标题的不是写了吗?「主从复制」,slave会按照某种策略从master同步数据。Redis中我们可以通过slaveof命令让一个Redis实例去复制(replicate)另外一台Redis的状态。被复制的Redis实例就是master节点,而执行slaveof命令的机器就是slave节点。
Redis的主从复制分为两个步骤,分别是「同步」和「命令传播」。
「同步操作」用于将Master节点内存状态复制给Slave节点,而「命令传播」则是在同步时,客户端又执行了一些「写」操作改变了服务器的状态,此时master节点的状态与同步操作执行的时候不一致了,所以需要命令传播来使master和slave状态重新一致。
同步的大致的流程如下:
- slave节点向master节点发送sync命令
- master收到sync命令之后会执行bgsave命令,Redis会fork出一个子进程在后台生成RDB文件,同时将同步过程中的写命令记录到缓冲区中
- 文件生成后,master会把RDB文件发送给slave,从服务器接收到RDB文件会将其载入内存
- 然后master将记录在缓冲区的所有写命令发送给slave,slave对这些命令进行「重放」,将其数据库的状态更新至和master一致
为了让大家更加清晰的认识到这个过程,我们通过图再来了解一下。
Redis主从复制
,那如果同步完了之后slave又挂了咋办?slave重启之后很可能就又跟maste不一致了?
的确是这样,这就涉及到一个名词叫「断点续传」了。上面讨论的是slave第一次连接到master,会执行「全量复制」,而针对上面这种情况,Redis新老版本处理方式不一样。
Redis2.8之前,当主从完成了同步之后,slave如果断线重连,向master发送sync命令,master会将全量的数据再次同给slave。
但是我们会发现一个问题,就是大部分数据都是有序的,再次全量同步显得没有必要。而在 Redis2.8之后,为了解决这个问题,便使用了psync命令来代替sync。
简单来说psync命令就是将slave断线期间master接收到的写命令全部发送给slave,slave重放之后状态便与master一致了。
呵呵,就这?那你知道psync具体怎么实现的吗?还是说就只会用用?
psync的实现依赖于主从双方共同维护的offset偏移量。
每次master向slave进行「命令传播」,传播了多少个字节的数据,就将自己的offset加上传播的字节数。而slave每次收到多少字节的数据,也会同样的更新自己的offset。
基于offset,只需要简单的比对就知道当前主从的状态是否是一致的了,然后基于offset,将对应偏移量所对应的指令传播给slave重放即可。所以即使同步的时候slave挂掉了,基于offset,也能达到断点续传的效果。
不是吧不是吧,那master也挂了呢?你slave重新启动之后master的数据也更新了,按照你的说法,这两永远不可能达到数据一致了
这个问题Redis的确也有想到,实际上除了offset之外,slave断线重连之后还会带上上一个master的实例的runid,每个服务实例都有自己的唯一的runid,只要Redis服务重启,其runid就会发生改变。
master收到这个runid之后会判断是否与自己当前的runid一致,如果一致说明断线之前还是与自己建立的连接,而如果不一致就说明slave断线期间,master也发生了宕机,此时就需要将数据「全量同步」给slave了。
redis-runid
就算你能解决这个问题,但是你就维护了一个偏移量,偏移量对应的命令从哪儿来?天上掉下来吗?我哪儿知道这些命令是啥?
的确,我们需要通过这个offset去拿到真正需要的数据—也就是指令,而Redis是通过「复制积压缓冲区」来实现的。
名字高大上,实际上就是一队列。就跟什么递归、轮询、透传一样,听着高大上,实际上简单的一匹。言归正传,复制积压缓冲区的默认大小为1M,Redis在进行「命令传播」时,除了将写命令发送给slave,还会将命令写到「复制积压缓冲区」内,并和当前的offset关联起来。这样一来就能够通过offset获取到对应的指令了。
redis-backlog
但是由于缓冲区的大小有限,如果slave的断线时间太久,复制积压缓冲区内早些时候的指令就已经被新的指令覆盖掉了,此处可以理解为一个队列,早些时候入队的元素已经被出队了。
由于没有相对应的offset了,也就无法获取指令数据,此时Redis就会进行「全量同步」。当然,如果offset还存在于复制积压缓冲区中,则按照对应的offset进行「部分同步」。
基于以上的全量、增量的主从复制,能够在master出现故障的情况下,进行主从的切换,保证服务的正常运行。除此之外还能解决异常情况下数据丢失的问题。基于读写分离的策略还能够提高整个Redis服务的并发量。
可别吹了,你说的这个什么「主从复制」就没啥缺点吗?
其实是有的,例如刚刚提到的主从的切换,如果不用现成的「HA」框架,这个过程需要程序员自己手动的完成,同时通知服务调用方Redis的IP发生了变化,这个过程可以说是十分的复杂,甚至还可能涉及到代码配置的改动。而且之前的slave复制的可都是挂掉的master,还得去slave上更改其复制的主库,就更加复杂了。
除此之外,虽然实现了读写分离,但是由于是「一主多从」的架构,集群的「读请求」可以扩展,但是「写请求」的并发是有上限的,那就是master能够扛住的上限,这个没有办法扩展。
好了,本期的分享就到此结束了,我们下期再见。
如果你觉得这篇文章对你有帮助,可以关注「SH的全栈笔记」
相关推荐
- 订单超时自动取消业务的 N 种实现方案,从原理到落地全解析
-
在分布式系统架构中,订单超时自动取消机制是保障业务一致性的关键组件。某电商平台曾因超时处理机制缺陷导致日均3000+订单库存锁定异常,直接损失超50万元/天。本文将从技术原理、实现细节、...
- 使用Spring Boot 3开发时,如何选择合适的分布式技术?
-
作为互联网大厂的后端开发人员,当你满怀期待地用上SpringBoot3,准备在项目中大显身手时,却发现一个棘手的问题摆在面前:面对众多分布式技术,究竟该如何选择,才能让SpringBoot...
- 数据库内存爆满怎么办?99%的程序员都踩过这个坑!
-
你的数据库是不是又双叒叕内存爆满了?!服务器监控一片红色警告,老板在群里@所有人,运维同事的电话打爆了手机...这种场景是不是特别熟悉?别慌!作为一个在数据库优化这条路上摸爬滚打了10年的老司机,今天...
- springboot利用Redisson 实现缓存与数据库双写不一致问题
-
使用了Redisson来操作Redis分布式锁,主要功能是从缓存和数据库中获取商品信息,以下是针对并发时更新缓存和数据库带来不一致问题的解决方案1.基于读写锁和删除缓存策略在并发更新场景下,...
- 外贸独立站数据库炸了?对象缓存让你起死回生
-
上周黑五,一个客户眼睁睁看着服务器CPU飙到100%——每次页面加载要查87次数据库。这让我想起2024年Pantheon的测试:Redis缓存能把WooCommerce查询速度提升20倍。跨境电商最...
- 手把手教你在 Spring Boot3 里纯编码实现自定义分布式锁
-
为什么要自己实现分布式锁?你是不是早就受够了引入各种第三方依赖时的繁琐?尤其是分布式锁这块,每次集成Redisson或者Zookeeper,都得额外维护一堆配置,有时候还会因为版本兼容问题头疼半...
- 如何设计一个支持百万级实时数据推送的WebSocket集群架构?
-
面试解答:要设计一个支持百万级实时数据推送的WebSocket集群架构,需从**连接管理、负载均衡、水平扩展、容灾恢复**四个维度切入:连接层设计-**长连接优化**:采用Netty或Und...
- Redis数据结构总结——面试最常问到的知识点
-
Redis作为主流的nosql存储,面试时经常会问到。其主要场景是用作缓存,分布式锁,分布式session,消息队列,发布订阅等等。其存储结构主要有String,List,Set,Hash,Sort...
- skynet服务的缺陷 lua死循环
-
服务端高级架构—云风的skynet这边有一个关于云风skynet的视频推荐给大家观看点击就可以观看了!skynet是一套多人在线游戏的轻量级服务端框架,使用C+Lua开发。skynet的显著优点是,...
- 七年Java开发的一路辛酸史:分享面试京东、阿里、美团后的心得
-
前言我觉得有一个能够找一份大厂的offer的想法,这是很正常的,这并不是我们的饭后谈资而是每个技术人的追求。像阿里、腾讯、美团、字节跳动、京东等等的技术氛围与技术规范度还是要明显优于一些创业型公司...
- mysql mogodb es redis数据库之间的区别
-
1.MySQL应用场景概念:关系型数据库,基于关系模型,使用表和行存储数据。优点:支持ACID事务,数据具有很高的一致性和完整性。缺点:垂直扩展能力有限,需要分库分表等方式扩展。对于复杂的查询和大量的...
- redis,memcached,nginx网络组件
-
1.理解阻塞io,非阻塞io,同步io,异步io的区别2.理解BIO和AIO的区别io多路复用只负责io检测,不负责io操作阻塞io中的write,能写多少是多少,只要写成功就返回,譬如准备写500字...
- SpringBoot+Vue+Redis实现验证码功能
-
一个小时只允许发三次验证码。一次验证码有效期二分钟。SpringBoot整合Redis...
- AWS MemoryDB 可观测最佳实践
-
AWSMemoryDB介绍AmazonMemoryDB是一种完全托管的、内存中数据存储服务,专为需要极低延迟和高吞吐量的应用程序而设计。它与Redis和Memcached相似,但具有更...
- 从0构建大型AI推荐系统:实时化引擎从工具到生态的演进
-
在AI浪潮席卷各行各业的今天,推荐系统正从幕后走向前台,成为用户体验的核心驱动力。本文将带你深入探索一个大型AI推荐系统从零起步的全过程,揭示实时化引擎如何从单一工具演进为复杂生态的关键路径。无论你是...
你 发表评论:
欢迎- 一周热门
-
-
Redis客户端 Jedis 与 Lettuce
-
高并发架构系列:Redis并发竞争key的解决方案详解
-
redis如何防止并发(redis如何防止高并发)
-
Java SE Development Kit 8u441下载地址【windows版本】
-
开源推荐:如何实现的一个高性能 Redis 服务器
-
redis安装与调优部署文档(WinServer)
-
Redis 入门 - 安装最全讲解(Windows、Linux、Docker)
-
一文带你了解 Redis 的发布与订阅的底层原理
-
Redis如何应对并发访问(redis控制并发量)
-
Oracle如何创建用户,表空间(oracle19c创建表空间用户)
-
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (83)
- php redis (97)
- redis 存储 (67)
- redis 锁 (74)
- 启动 redis (73)
- redis 时间 (60)
- redis 删除 (69)
- redis内存 (64)
- redis并发 (53)
- redis 主从 (71)
- redis同步 (53)
- redis结构 (53)
- redis 订阅 (54)
- redis 登录 (62)
- redis 面试 (58)
- redis问题 (54)
- 阿里 redis (67)
- redis的缓存 (57)
- lua redis (59)
- redis 连接池 (64)