百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

面试官:为什么Redis单线程却能支撑高并发?

mhr18 2024-10-25 12:38 27 浏览 0 评论

最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。

几种 I/O 模型

为什么 Redis 中要使用 I/O 多路复用这种技术呢?

首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。

Blocking I/O

先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个文件描述符(File Descriptor 以下简称 FD)进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。

这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:



阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。

I/O 多路复用

虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。

阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:



在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。

关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。

Reactor 设计模式

Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)



文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 accept、read、write 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。

虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。

I/O 多路复用模块

I/O 多路复用模块封装了底层的 select、epoll、avport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。



在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:

  • static int aeApiCreate(aeEventLoop *eventLoop)
  • static int aeApiResize(aeEventLoop *eventLoop, int setsize)
  • static void aeApiFree(aeEventLoop *eventLoop)
  • static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)
  • static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)
  • static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)

同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:

// select
typedef struct aeApiState {
 fd_set rfds, wfds;
 fd_set _rfds, _wfds;
} aeApiState;
// epoll
typedef struct aeApiState {
 int epfd;
 struct epoll_event *events;
} aeApiState;

这些上下文信息会存储在 eventLoop 的 void *state 中,不会暴露到上层,只在当前子模块中使用。

封装 select 函数

select 可以监控 FD 的可读、可写以及出现错误的情况。

在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:

int fd = /* file descriptor */

fd_set rfds;

FD_ZERO(&rfds);

FD_SET(fd, &rfds)

for ( ; ; ) {

select(fd+1, &rfds, NULL, NULL, NULL);

if (FD_ISSET(fd, &rfds)) {

/* file descriptor `fd` becomes readable */

}

}

  1. 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;
  2. 使用 FD_SET 将 fd 加入 rfds;
  3. 调用 select 方法监控 rfds 中的 FD 是否可读;
  4. 当 select 返回时,检查 FD 的状态并完成对应的操作。

而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds:

static int aeApiCreate(aeEventLoop *eventLoop) {
 aeApiState *state = zmalloc(sizeof(aeApiState));
 if (!state) return -1;
 FD_ZERO(&state->rfds);
 FD_ZERO(&state->wfds);
 eventLoop->apidata = state;
 return 0;
}

而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
 aeApiState *state = eventLoop->apidata;
 if (mask & AE_READABLE) FD_SET(fd,&state->rfds);
 if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);
 return 0;
}

整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired 数组中,并返回事件的个数:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
 aeApiState *state = eventLoop->apidata;
 int retval, j, numevents = 0;
 memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));
 memcpy(&state->_wfds,&state->wfds,sizeof(fd_set));
 retval = select(eventLoop->maxfd+1,
 &state->_rfds,&state->_wfds,NULL,tvp);
 if (retval > 0) {
 for (j = 0; j <= eventLoop->maxfd; j++) {
 int mask = 0;
 aeFileEvent *fe = &eventLoop->events[j];
 if (fe->mask == AE_NONE) continue;
 if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))
 mask |= AE_READABLE;
 if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))
 mask |= AE_WRITABLE;
 eventLoop->fired[numevents].fd = j;
 eventLoop->fired[numevents].mask = mask;
 numevents++;
 }
 }
 return numevents;
}

封装 epoll 函数

Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd:

static int aeApiCreate(aeEventLoop *eventLoop) {
 aeApiState *state = zmalloc(sizeof(aeApiState));
 if (!state) return -1;
 state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);
 if (!state->events) {
 zfree(state);
 return -1;
 }
 state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */
 if (state->epfd == -1) {
 zfree(state->events);
 zfree(state);
 return -1;
 }
 eventLoop->apidata = state;
 return 0;
}

在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
 aeApiState *state = eventLoop->apidata;
 struct epoll_event ee = {0}; /* avoid valgrind warning */
 /* If the fd was already monitored for some event, we need a MOD
 * operation. Otherwise we need an ADD operation. */
 int op = eventLoop->events[fd].mask == AE_NONE ?
 EPOLL_CTL_ADD : EPOLL_CTL_MOD;
 ee.events = 0;
 mask |= eventLoop->events[fd].mask; /* Merge old events */
 if (mask & AE_READABLE) ee.events |= EPOLLIN;
 if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;
 ee.data.fd = fd;
 if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;
 return 0;
}

由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:

typedef union epoll_data {
 void *ptr;
 int fd; /* 文件描述符 */
 uint32_t u32;
 uint64_t u64;
} epoll_data_t;
struct epoll_event {
 uint32_t events; /* Epoll 事件 */
 epoll_data_t data;
};

其中保存了发生的 epoll 事件(EPOLLIN、EPOLLOUT、EPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。

aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
 aeApiState *state = eventLoop->apidata;
 int retval, numevents = 0;
 retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,
 tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);
 if (retval > 0) {
 int j;
 numevents = retval;
 for (j = 0; j < numevents; j++) {
 int mask = 0;
 struct epoll_event *e = state->events+j;
 if (e->events & EPOLLIN) mask |= AE_READABLE;
 if (e->events & EPOLLOUT) mask |= AE_WRITABLE;
 if (e->events & EPOLLERR) mask |= AE_WRITABLE;
 if (e->events & EPOLLHUP) mask |= AE_WRITABLE;
 eventLoop->fired[j].fd = e->data.fd;
 eventLoop->fired[j].mask = mask;
 }
 }
 return numevents;
}

子模块的选择

因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:

#ifdef HAVE_EVPORT

#include "ae_evport.c"

#else

#ifdef HAVE_EPOLL

#include "ae_epoll.c"

#else

#ifdef HAVE_KQUEUE

#include "ae_kqueue.c"

#else

#include "ae_select.c"

#endif

#endif

#endif

因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:



Redis 会优先选择时间复杂度为 $O(1)$ 的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 $O(n)$,并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。

总结

Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。

整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。

相关推荐

Redis合集-使用benchmark性能测试

采用开源Redis的redis-benchmark工具进行压测,它是Redis官方的性能测试工具,可以有效地测试Redis服务的性能。本次测试使用Redis官方最新的代码进行编译,详情请参见Redis...

Java简历总被已读不回?面试挂到怀疑人生?这几点你可能真没做好

最近看了几十份简历,发现大部分人不是技术差,而是不会“卖自己”——一、简历死穴:你写的不是经验,是岗位说明书!反面教材:ד使用SpringBoot开发项目”ד负责用户模块功能实现”救命写法:...

redission YYDS(redission官网)

每天分享一个架构知识Redission是一个基于Redis的分布式Java锁框架,它提供了各种锁实现,包括可重入锁、公平锁、读写锁等。使用Redission可以方便地实现分布式锁。red...

从数据库行锁到分布式事务:电商库存防超卖的九重劫难与破局之道

2023年6月18日我们维护的电商平台在零点刚过3秒就遭遇了严重事故。监控大屏显示某爆款手机SKU_IPHONE13_PRO_MAX在库存仅剩500台时,订单系统却产生了1200笔有效订单。事故复盘发...

SpringBoot系列——实战11:接口幂等性的形而上思...

欢迎关注、点赞、收藏。幂等性不仅是一种技术需求,更是数字文明对确定性追求的体现。在充满不确定性的网络世界中,它为我们建立起可依赖的存在秩序,这或许正是技术哲学最深刻的价值所在。幂等性的本质困境在支付系...

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享

如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享在高流量场景下。首先,我需要回忆一下常见的优化策略,比如负载均衡、缓存、数据库优化、微服务拆分这些。不过,可能还需要考虑用户的具体情况,比...

Java面试题: 项目开发中的有哪些成长?该如何回答

在Java面试中,当被问到“项目中的成长点”时,面试官不仅想了解你的技术能力,更希望看到你的问题解决能力、学习迭代意识以及对项目的深度思考。以下是回答的策略和示例,帮助你清晰、有说服力地展示成长点:一...

互联网大厂后端必看!Spring Boot 如何实现高并发抢券逻辑?

你有没有遇到过这样的情况?在电商大促时,系统上线了抢券活动,结果活动刚一开始,服务器就不堪重负,出现超卖、系统崩溃等问题。又或者用户疯狂点击抢券按钮,最后却被告知无券可抢,体验极差。作为互联网大厂的后...

每日一题 |10W QPS高并发限流方案设计(含真实代码)

面试场景还原面试官:“如果系统要承载10WQPS的高并发流量,你会如何设计限流方案?”你:“(稳住,我要从限流算法到分布式架构全盘分析)…”一、为什么需要限流?核心矛盾:系统资源(CPU/内存/数据...

Java面试题:服务雪崩如何解决?90%人栽了

服务雪崩是指微服务架构中,由于某个服务出现故障,导致故障在服务之间不断传递和扩散,最终造成整个系统崩溃的现象。以下是一些解决服务雪崩问题的常见方法:限流限制请求速率:通过限流算法(如令牌桶算法、漏桶算...

面试题官:高并发经验有吗,并发量多少,如何回复?

一、有实际高并发经验(建议结构)直接量化"在XX项目中,系统日活用户约XX万,核心接口峰值QPS达到XX,TPS处理能力为XX/秒。通过压力测试验证过XX并发线程下的稳定性。"技术方案...

瞬时流量高并发“保命指南”:这样做系统稳如泰山,老板跪求加薪

“系统崩了,用户骂了,年终奖飞了!”——这是多少程序员在瞬时大流量下的真实噩梦?双11秒杀、春运抢票、直播带货……每秒百万请求的冲击,你的代码扛得住吗?2025年了,为什么你的系统一遇高并发就“躺平”...

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。

其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。比如上周有个小伙伴找我,五年经验但简历全是'参与系统设计''优化接口性能'这种空话。我就问他:你做的秒杀...

PHP技能评测(php等级考试)

公司出了一些自我评测的PHP题目,现将题目和答案记录于此,以方便记忆。1.魔术函数有哪些,分别在什么时候调用?__construct(),类的构造函数__destruct(),类的析构函数__cal...

你的简历在HR眼里是青铜还是王者?

你的简历在HR眼里是青铜还是王者?兄弟,简历投了100份没反应?面试总在第三轮被刷?别急着怀疑人生,你可能只是踩了这些"隐形求职雷"。帮3630+程序员改简历+面试指导和处理空窗期时间...

取消回复欢迎 发表评论: