面试官问:Redis 内存满了怎么办?我想不到
mhr18 2024-10-24 11:15 28 浏览 0 评论
来源:https://tinyurl.com/y6qctca6
Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小。
1、通过配置文件配置
通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小
//设置Redis最大占用内存大小为100Mmaxmemory 100mb复制代码
redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的
2、通过命令修改
Redis支持运行时通过命令动态修改内存大小
如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存
Redis的内存淘汰
既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?
实际上Redis定义了几种策略用来处理这种情况:
noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)
allkeys-lru:从所有key中使用LRU算法进行淘汰
volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰
allkeys-random:从所有key中随机淘汰数据
volatile-random:从设置了过期时间的key中随机淘汰
volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰
当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误
如何获取及设置内存淘汰策略
获取当前内存淘汰策略:
127.0.0.1:6379> config get maxmemory-policy
通过配置文件设置淘汰策略(修改redis.conf文件):
maxmemory-policy allkeys-lru
通过命令修改淘汰策略:
127.0.0.1:6379> config set maxmemory-policy allkeys-lru
LRU算法
什么是LRU?
上面说到了Redis可使用最大内存使用完了,是可以使用LRU算法进行内存淘汰的,那么什么是LRU算法呢?
LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法。在使用内存作为缓存的时候,缓存的大小一般是固定的。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据。这个时候就可以使用LRU算法了。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉。
使用java实现一个简单的LRU算法
上面这段代码实现了一个简单的LUR算法,代码很简单,也加了注释,仔细看一下很容易就看懂。
LRU在Redis中的实现
近似LRU算法
Redis使用的是近似LRU算法,它跟常规的LRU算法还不太一样。近似LRU算法通过随机采样法淘汰数据,每次随机出5(默认)个key,从里面淘汰掉最近最少使用的key。
可以通过maxmemory-samples参数修改采样数量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法
Redis为了实现近似LRU算法,给每个key增加了一个额外增加了一个24bit的字段,用来存储该key最后一次被访问的时间。
Redis3.0对近似LRU的优化
Redis3.0对近似LRU算法进行了一些优化。新算法会维护一个候选池(大小为16),池中的数据根据访问时间进行排序,第一次随机选取的key都会放入池中,随后每次随机选取的key只有在访问时间小于池中最小的时间才会放入池中,直到候选池被放满。当放满后,如果有新的key需要放入,则将池中最后访问时间最大(最近被访问)的移除。
当需要淘汰的时候,则直接从池中选取最近访问时间最小(最久没被访问)的key淘汰掉就行。
LRU算法的对比
我们可以通过一个实验对比各LRU算法的准确率,先往Redis里面添加一定数量的数据n,使Redis可用内存用完,再往Redis里面添加n/2的新数据,这个时候就需要淘汰掉一部分的数据,如果按照严格的LRU算法,应该淘汰掉的是最先加入的n/2的数据。生成如下各LRU算法的对比图([图片来源]
你可以看到图中有三种不同颜色的点:
- 浅灰色是被淘汰的数据
- 灰色是没有被淘汰掉的老数据
- 绿色是新加入的数据
我们能看到Redis3.0采样数是10生成的图最接近于严格的LRU。而同样使用5个采样数,Redis3.0也要优于Redis2.8。
LFU算法
LFU算法是Redis4.0里面新加的一种淘汰策略。它的全称是Least Frequently Used,它的核心思想是根据key的最近被访问的频率进行淘汰,很少被访问的优先被淘汰,被访问的多的则被留下来。
LFU算法能更好的表示一个key被访问的热度。假如你使用的是LRU算法,一个key很久没有被访问到,只刚刚是偶尔被访问了一次,那么它就被认为是热点数据,不会被淘汰,而有些key将来是很有可能被访问到的则被淘汰了。如果使用LFU算法则不会出现这种情况,因为使用一次并不会使一个key成为热点数据。
LFU一共有两种策略:
- volatile-lfu:在设置了过期时间的key中使用LFU算法淘汰key
- allkeys-lfu:在所有的key中使用LFU算法淘汰数据
设置使用这两种淘汰策略跟前面讲的一样,不过要注意的一点是这两周策略只能在Redis4.0及以上设置,如果在Redis4.0以下设置会报错
问题
最后留一个小问题,可能有的人注意到了,我在文中并没有解释为什么Redis使用近似LRU算法而不使用准确的LRU算法,可以在评论区给出你的答案,大家一起讨论学习。
我自己是一名从事了多年开发的Java老程序员,辞职目前在做自己的Java私人定制课程,今年年初我花了一个月整理了一份最适合2019年学习的Java学习干货,从最基础的JavaSE到Spring各种框架都有整理,送给每一位Java小伙伴,想要获取的可以关注我的头条号并在后台私信我:Java,即可免费获取。
相关推荐
- Java面试宝典之问答系列(java面试回答)
-
以下内容,由兆隆IT云学院就业部根据多年成功就业服务经验提供:1.写出从数据库表Custom中查询No、Name、Num1、Num2并将Name以姓名显示、计算出的和以总和显示的SQL。SELECT...
- ADG (Active Data Guard) 数据容灾架构下,如何配置 Druid 连接池?
-
如上图的数据容灾架构下,上层应用如果使用Druid连接池,应该如何配置,才能在数据库集群节点切换甚至主备数据中心站点切换的情况下,上层应用不需要变动(无需修改配置也无需重启);即数据库节点宕机/...
- SpringBoot多数据源dynamic-datasource快速入门
-
一、简介dynamic-datasourc是一个基于SpringBoot的快速集成多数据源的启动器,其主要特性如下:支持数据源分组,适用于多种场景纯粹多库读写分离一主多从混合模式。支持...
- SpringBoot项目快速开发框架JeecgBoot——项目简介及系统架构!
-
项目简介及系统架构JeecgBoot是一款基于SpringBoot的开发平台,它采用前后端分离架构,集成的框架有SpringBoot2.x、SpringCloud、AntDesignof...
- 常见文件系统格式有哪些(文件系统类型有哪几种)
-
PART.01常见文件系统格式有哪些常见的文件系统格式有很多,通常根据使用场景(Windows、Linux、macOS、移动设备、U盘、硬盘等)有所不同。以下是一些主流和常见的文件系统格式及其特点:一...
- Oracle MySQL Operator部署集群(oracle mysql group by)
-
以下是使用OracleMySQLOperator部署MySQL集群的完整流程及关键注意事项:一、部署前准备安装MySQLOperator通过Helm安装Operator到Ku...
- LibreOffice加入"转向Linux"运动
-
LibreOffice项目正准备削减部分Windows支持,并鼓励用户切换到Linux系统。自Oracle放弃OpenOffice后,支持和指导LibreOffice开发的文档基金会对未来有着明确的观...
- Oracle Linux 10发布:UEK 8.1、后量子加密、增强开发工具等
-
IT之家6月28日消息,科技媒体linuxiac昨日(6月27日)发布博文,报道称OracleLinux10正式发布,完全二进制兼容(binarycompatibility...
- 【mykit-data】 数据库同步工具(数据库同步工具 开源)
-
项目介绍支持插件化、可视化的数据异构中间件,支持的数据异构方式如下MySQL<——>MySQL(增量、全量)MySQL<——>Oracle(增量、全量)Oracle...
- oracle关于xml的解析(oracle读取xml节点的属性值)
-
有时需要在存储过程中处理xml,oracle提供了相应的函数来进行处理,xmltype以及相关的函数。废话少说,上代码:selectxmltype(SIConfirmOutput).extract...
- 如何利用DBSync实现数据库同步(通过dblink同步数据库)
-
DBSync是一款通用型的数据库同步软件,能侦测数据表之间的差异,能实时同步差异数据,从而使双方始终保持一致。支持各种数据库,支持异构同步、增量同步,且提供永久免费版。本文介绍其功能特点及大致用法,供...
- MYSQL存储引擎InnoDB(八十):InnoDB静态数据加密
-
InnoDB支持独立表空间、通用表空间、mysql系统表空间、重做日志和撤消日志的静态数据加密。从MySQL8.0.16开始,还支持为模式和通用表空间设置加密默认值,这允许DBA控制在这些模...
- JDK高版本特性总结与ZGC实践(jdk高版本兼容低版本吗)
-
美团信息安全技术团队核心服务升级JDK17后,性能与稳定性大幅提升,机器成本降低了10%。高版本JDK与ZGC技术令人惊艳,且JavaAISDK最低支持JDK17。本文总结了JDK17的主要...
- 4 种 MySQL 同步 ES 方案,yyds!(两个mysql数据库自动同步的方法)
-
本文会先讲述数据同步的4种方案,并给出常用数据迁移工具,干货满满!不BB,上文章目录:1.前言在实际项目开发中,我们经常将MySQL作为业务数据库,ES作为查询数据库,用来实现读写分离,...
- 计算机Java培训课程包含哪些内容?其实就这六大块
-
不知不觉秋天已至,如果你还处于就业迷茫期,不如来学习Java。对于非科班小白来说,Java培训会更适合你。提前了解下计算机Java培训课程内容,会有助于你后续学习。下面,我就从六个部分为大家详细介绍...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Java面试宝典之问答系列(java面试回答)
- ADG (Active Data Guard) 数据容灾架构下,如何配置 Druid 连接池?
- SpringBoot多数据源dynamic-datasource快速入门
- SpringBoot项目快速开发框架JeecgBoot——项目简介及系统架构!
- 常见文件系统格式有哪些(文件系统类型有哪几种)
- Oracle MySQL Operator部署集群(oracle mysql group by)
- LibreOffice加入"转向Linux"运动
- Oracle Linux 10发布:UEK 8.1、后量子加密、增强开发工具等
- 【mykit-data】 数据库同步工具(数据库同步工具 开源)
- oracle关于xml的解析(oracle读取xml节点的属性值)
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle 空为0 (51)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)