面试官:Redis分布式锁超时了,任务还没执行完怎么办?
mhr18 2024-10-23 11:34 33 浏览 0 评论
今天主要分享的是面试中常见的redis的一些面试内容。如果你正好需要刚好可以帮你回顾一下,如果不需要可以收藏起来后面用到的时候翻出来回顾。
一、背景
面试官:你们项目中有使用分布式锁么?
我:有使用。
面试官:你们使用分布式锁主要是为了干啥?
我:多节点并发访问同一份数据的时候,防止造成脏数据。
面试官:都有哪些方案实现分布式锁?你们用的是哪一种?
我:有基于zk的临时顺序节点的方案,有redis的setnx和指定expire超时时间的方案。
面试官:你们是用哪种方案呢?
我:用的是redis的一个封装组件Redisson。
面试官:你们redis是用的哪种集群模式?
我:用的是redis的cluster集群模式。
面试官:Redisson可以配置哪些模式?
我:单节点模式、cluster模式、哨兵模式
面试官:那分布式锁的锁超时时间是怎么配置的?
我:这个超时时间需要根据业务场景进行压测然后根据压测结果进行评估,在压测结果上进行稍微放大1~2倍。
面试官:那假如分布式锁设置的超时时间是2s,但是2s内还没执行完成,锁自动释放了,这种怎么处理呢?
我:这个,有点记不清了。
面试官:好的。你们redis cluster集群模式中,如果主挂了怎么办?
我:我们是三主三从的集群模式,如果半数以上主节点与故障主节点通信超过,认为当前该主节点挂掉,主下面的从就会变为主。如果主下面没有从,那么集群就会进入fail状态。从节点就是主节点的备份。
面试官:redis的持久化机制有几种,分别有什么优缺点?
我:redis的持久化分为:RDB和AOF,一种是快照,一种是追加。快照的话是一段时间进行数据的备份,追加是只要有指令执行,就记录记录指令信息。后面可以根据指令进行数据的恢复。
快照模式如果挂了的话很有可能在快照期间数据丢失了,优点是恢复数据比较快,镜像的话恢复会比较慢,优点是数据数据存的比较全,配置好持久化策略可以做到数据完全不丢失。
面试官:那你们是怎么用的?
我:我们是两种都用,定期备份数据。挂了之后方便快速恢复同时保证了数据的完整性。
真是打破砂锅问到底啊,兄弟集美们,夺命连环十八问。
不过一码归一码,还是让我回忆起很多知识。也顺带总结起来,下次遇到这块问题的时候也不至于啥都说不出来。
接下来,把Redisson在锁超时后业务还没执行完成的情况细聊下。
二、Redisson锁超时看门狗机制
Redisson的宗旨是促进使用者对 Redis 的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上。
先上Github地址,中文文档,贼6。
Redisson中文文档 github.com/redisson/re…
接下来主要分析:如果锁已经超时了,但是线程还没执行完任务该如何处理?
可重入锁(Reentrant Lock)
基于Redis的Redisson分布式可重入锁RLock Java对象实现了java.util.concurrent.locks.Lock接口。同时还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RLock lock = redisson.getLock("anyLock");
//最常见的使用方法
lock.lock();
大家都知道,如果负责储存这个分布式锁的Redisson节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。
为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。
默认情况下,看门狗的检查锁的超时时间是30秒钟,
也可以通过修改Config.lockWatchdogTimeout 来另行指定。
另外Redisson还通过加锁的方法提供了 leaseTime 的参数来指定加锁的时间。超过这个时间后锁便自动解开了。
// 加锁以后10秒钟自动解锁
// 无需调用unlock方法手动解锁
lock.lock(10, TimeUnit.SECONDS);
// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS);
if (res) {
try {
...
} finally {
lock.unlock();
}
}
拓展:
Redisson同时还为分布式锁提供了异步执行的相关方法:
RLock lock = redisson.getLock("anyLock");
lock.lockAsync();
lock.lockAsync(10, TimeUnit.SECONDS);
Future<Boolean> res = lock.tryLockAsync(100, 10, TimeUnit.SECONDS);
RLock对象完全符合Java的Lock规范。也就是说只有拥有锁的进程才能解锁,其他进程解锁则会抛出 IllegalMonitorStateException 错误。但是如果遇到需要其他进程也能解锁的情况,请使用分布式信号量 Semaphore 对象。
作者:后端架构进阶
链接:https://juejin.cn/post/7055904324542529550
相关推荐
- 订单超时自动取消业务的 N 种实现方案,从原理到落地全解析
-
在分布式系统架构中,订单超时自动取消机制是保障业务一致性的关键组件。某电商平台曾因超时处理机制缺陷导致日均3000+订单库存锁定异常,直接损失超50万元/天。本文将从技术原理、实现细节、...
- 使用Spring Boot 3开发时,如何选择合适的分布式技术?
-
作为互联网大厂的后端开发人员,当你满怀期待地用上SpringBoot3,准备在项目中大显身手时,却发现一个棘手的问题摆在面前:面对众多分布式技术,究竟该如何选择,才能让SpringBoot...
- 数据库内存爆满怎么办?99%的程序员都踩过这个坑!
-
你的数据库是不是又双叒叕内存爆满了?!服务器监控一片红色警告,老板在群里@所有人,运维同事的电话打爆了手机...这种场景是不是特别熟悉?别慌!作为一个在数据库优化这条路上摸爬滚打了10年的老司机,今天...
- springboot利用Redisson 实现缓存与数据库双写不一致问题
-
使用了Redisson来操作Redis分布式锁,主要功能是从缓存和数据库中获取商品信息,以下是针对并发时更新缓存和数据库带来不一致问题的解决方案1.基于读写锁和删除缓存策略在并发更新场景下,...
- 外贸独立站数据库炸了?对象缓存让你起死回生
-
上周黑五,一个客户眼睁睁看着服务器CPU飙到100%——每次页面加载要查87次数据库。这让我想起2024年Pantheon的测试:Redis缓存能把WooCommerce查询速度提升20倍。跨境电商最...
- 手把手教你在 Spring Boot3 里纯编码实现自定义分布式锁
-
为什么要自己实现分布式锁?你是不是早就受够了引入各种第三方依赖时的繁琐?尤其是分布式锁这块,每次集成Redisson或者Zookeeper,都得额外维护一堆配置,有时候还会因为版本兼容问题头疼半...
- 如何设计一个支持百万级实时数据推送的WebSocket集群架构?
-
面试解答:要设计一个支持百万级实时数据推送的WebSocket集群架构,需从**连接管理、负载均衡、水平扩展、容灾恢复**四个维度切入:连接层设计-**长连接优化**:采用Netty或Und...
- Redis数据结构总结——面试最常问到的知识点
-
Redis作为主流的nosql存储,面试时经常会问到。其主要场景是用作缓存,分布式锁,分布式session,消息队列,发布订阅等等。其存储结构主要有String,List,Set,Hash,Sort...
- skynet服务的缺陷 lua死循环
-
服务端高级架构—云风的skynet这边有一个关于云风skynet的视频推荐给大家观看点击就可以观看了!skynet是一套多人在线游戏的轻量级服务端框架,使用C+Lua开发。skynet的显著优点是,...
- 七年Java开发的一路辛酸史:分享面试京东、阿里、美团后的心得
-
前言我觉得有一个能够找一份大厂的offer的想法,这是很正常的,这并不是我们的饭后谈资而是每个技术人的追求。像阿里、腾讯、美团、字节跳动、京东等等的技术氛围与技术规范度还是要明显优于一些创业型公司...
- mysql mogodb es redis数据库之间的区别
-
1.MySQL应用场景概念:关系型数据库,基于关系模型,使用表和行存储数据。优点:支持ACID事务,数据具有很高的一致性和完整性。缺点:垂直扩展能力有限,需要分库分表等方式扩展。对于复杂的查询和大量的...
- redis,memcached,nginx网络组件
-
1.理解阻塞io,非阻塞io,同步io,异步io的区别2.理解BIO和AIO的区别io多路复用只负责io检测,不负责io操作阻塞io中的write,能写多少是多少,只要写成功就返回,譬如准备写500字...
- SpringBoot+Vue+Redis实现验证码功能
-
一个小时只允许发三次验证码。一次验证码有效期二分钟。SpringBoot整合Redis...
- AWS MemoryDB 可观测最佳实践
-
AWSMemoryDB介绍AmazonMemoryDB是一种完全托管的、内存中数据存储服务,专为需要极低延迟和高吞吐量的应用程序而设计。它与Redis和Memcached相似,但具有更...
- 从0构建大型AI推荐系统:实时化引擎从工具到生态的演进
-
在AI浪潮席卷各行各业的今天,推荐系统正从幕后走向前台,成为用户体验的核心驱动力。本文将带你深入探索一个大型AI推荐系统从零起步的全过程,揭示实时化引擎如何从单一工具演进为复杂生态的关键路径。无论你是...
你 发表评论:
欢迎- 一周热门
-
-
Redis客户端 Jedis 与 Lettuce
-
高并发架构系列:Redis并发竞争key的解决方案详解
-
redis如何防止并发(redis如何防止高并发)
-
Java SE Development Kit 8u441下载地址【windows版本】
-
开源推荐:如何实现的一个高性能 Redis 服务器
-
redis安装与调优部署文档(WinServer)
-
Redis 入门 - 安装最全讲解(Windows、Linux、Docker)
-
一文带你了解 Redis 的发布与订阅的底层原理
-
Redis如何应对并发访问(redis控制并发量)
-
Oracle如何创建用户,表空间(oracle19c创建表空间用户)
-
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (83)
- php redis (97)
- redis 存储 (67)
- redis 锁 (74)
- 启动 redis (73)
- redis 时间 (60)
- redis 删除 (69)
- redis内存 (64)
- redis并发 (53)
- redis 主从 (71)
- redis同步 (53)
- redis结构 (53)
- redis 订阅 (54)
- redis 登录 (62)
- redis 面试 (58)
- redis问题 (54)
- 阿里 redis (67)
- redis的缓存 (57)
- lua redis (59)
- redis 连接池 (64)