一口气说出 6种 延时队列的实现方法,面试官也得服
mhr18 2024-10-23 11:34 19 浏览 0 评论
五一期间原计划是写两篇文章,看一本技术类书籍,结果这五天由于自律性过于差,禁不住各种诱惑,我连电脑都没打开过,计划完美宣告失败。所以在这能看出和大佬之间的差距,人家没白没夜的更文,比你优秀的人比你更努力,难以望其项背,真是让我自愧不如。
知耻而后勇,这不逼着自己又学起来了,隔人比较喜欢一些实践类的东西,既学习到知识又能让技术落地,能搞出个demo最好,本来不知道该分享什么主题,好在最近项目紧急招人中,而我有幸做了回面试官,就给大家整理分享一道面试题:“如何实现延时队列?”。
下边会介绍多种实现延时队列的思路,文末提供有几种实现方式的 github地址。其实哪种方式都没有绝对的好与坏,只是看把它用在什么业务场景中,技术这东西没有最好的只有最合适的。
一、延时队列的应用
什么是延时队列?顾名思义:首先它要具有队列的特性,再给它附加一个延迟消费队列消息的功能,也就是说可以指定队列中的消息在哪个时间点被消费。
延时队列在项目中的应用还是比较多的,尤其像电商类平台:
1、订单成功后,在30分钟内没有支付,自动取消订单
2、外卖平台发送订餐通知,下单成功后60s给用户推送短信。
3、如果订单一直处于某一个未完结状态时,及时处理关单,并退还库存
4、淘宝新建商户一个月内还没上传商品信息,将冻结商铺等
。。。。
上边的这些场景都可以应用延时队列解决。
二、延时队列的实现
我个人一直秉承的观点:工作上能用JDK自带API实现的功能,就不要轻易自己重复造轮子,或者引入三方中间件。一方面自己封装很容易出问题(大佬除外),再加上调试验证产生许多不必要的工作量;另一方面一旦接入三方的中间件就会让系统复杂度成倍的增加,维护成本也大大的增加。
1、DelayQueue 延时队列
JDK 中提供了一组实现延迟队列的API,位于Java.util.concurrent包下DelayQueue。
DelayQueue是一个BlockingQueue(无界阻塞)队列,它本质就是封装了一个PriorityQueue(优先队列),PriorityQueue内部使用完全二叉堆(不知道的自行了解哈)来实现队列元素排序,我们在向DelayQueue队列中添加元素时,会给元素一个Delay(延迟时间)作为排序条件,队列中最小的元素会优先放在队首。队列中的元素只有到了Delay时间才允许从队列中取出。队列中可以放基本数据类型或自定义实体类,在存放基本数据类型时,优先队列中元素默认升序排列,自定义实体类就需要我们根据类属性值比较计算了。
先简单实现一下看看效果,添加三个order入队DelayQueue,分别设置订单在当前时间的5秒、10秒、15秒后取消。
要实现DelayQueue延时队列,队中元素要implements Delayed 接口,这个接口里只有一个getDelay方法,用于设置延期时间。Order类中compareTo方法负责对队列中的元素进行排序。
public class Order implements Delayed {
/**
* 延迟时间
*/
@JsonFormat(locale = "zh", timezone = "GMT+8", pattern = "yyyy-MM-dd HH:mm:ss")
private long time;
String name;
public Order(String name, long time, TimeUnit unit) {
this.name = name;
this.time = System.currentTimeMillis() + (time > 0 ? unit.toMillis(time) : 0);
}
@Override
public long getDelay(TimeUnit unit) {
return time - System.currentTimeMillis();
}
@Override
public int compareTo(Delayed o) {
Order Order = (Order) o;
long diff = this.time - Order.time;
if (diff <= 0) {
return -1;
} else {
return 1;
}
}
}
DelayQueue的put方法是线程安全的,因为put方法内部使用了ReentrantLock锁进行线程同步。DelayQueue还提供了两种出队的方法 poll() 和 take() , poll() 为非阻塞获取,没有到期的元素直接返回null;take() 阻塞方式获取,没有到期的元素线程将会等待。
public class DelayQueueDemo {
public static void main(String[] args) throws InterruptedException {
Order Order1 = new Order("Order1", 5, TimeUnit.SECONDS);
Order Order2 = new Order("Order2", 10, TimeUnit.SECONDS);
Order Order3 = new Order("Order3", 15, TimeUnit.SECONDS);
DelayQueue<Order> delayQueue = new DelayQueue<>();
delayQueue.put(Order1);
delayQueue.put(Order2);
delayQueue.put(Order3);
System.out.println("订单延迟队列开始时间:" + LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")));
while (delayQueue.size() != 0) {
/**
* 取队列头部元素是否过期
*/
Order task = delayQueue.poll();
if (task != null) {
System.out.format("订单:{%s}被取消, 取消时间:{%s}\n", task.name, LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")));
}
Thread.sleep(1000);
}
}
}
上边只是简单的实现入队与出队的操作,实际开发中会有专门的线程,负责消息的入队与消费。
执行后看到结果如下,Order1、Order2、Order3 分别在 5秒、10秒、15秒后被执行,至此就用DelayQueue实现了延时队列。
订单延迟队列开始时间:2020-05-06 14:59:09
订单:{Order1}被取消, 取消时间:{2020-05-06 14:59:14}
订单:{Order2}被取消, 取消时间:{2020-05-06 14:59:19}
订单:{Order3}被取消, 取消时间:{2020-05-06 14:59:24}
2、Quartz 定时任务
Quartz一款非常经典任务调度框架,在Redis、RabbitMQ还未广泛应用时,超时未支付取消订单功能都是由定时任务实现的。定时任务它有一定的周期性,可能很多单子已经超时,但还没到达触发执行的时间点,那么就会造成订单处理的不够及时。
引入quartz框架依赖包
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-quartz</artifactId>
</dependency>
在启动类中使用@EnableScheduling注解开启定时任务功能。
@EnableScheduling
@SpringBootApplication
public class DelayqueueApplication {
public static void main(String[] args) {
SpringApplication.run(DelayqueueApplication.class, args);
}
}
编写一个定时任务,每个5秒执行一次。
@Component
public class QuartzDemo {
//每隔五秒
@Scheduled(cron = "0/5 * * * * ? ")
public void process(){
System.out.println("我是定时任务!");
}
}
3、Redis sorted set
Redis的数据结构Zset,同样可以实现延迟队列的效果,主要利用它的score属性,redis通过score来为集合中的成员进行从小到大的排序。
通过zadd命令向队列delayqueue 中添加元素,并设置score值表示元素过期的时间;向delayqueue 添加三个order1、order2、order3,分别是10秒、20秒、30秒后过期。
zadd delayqueue 3 order3
消费端轮询队列delayqueue, 将元素排序后取最小时间与当前时间比对,如小于当前时间代表已经过期移除key。
/**
* 消费消息
*/
public void pollOrderQueue() {
while (true) {
Set<Tuple> set = jedis.zrangeWithScores(DELAY_QUEUE, 0, 0);
String value = ((Tuple) set.toArray()[0]).getElement();
int score = (int) ((Tuple) set.toArray()[0]).getScore();
Calendar cal = Calendar.getInstance();
int nowSecond = (int) (cal.getTimeInMillis() / 1000);
if (nowSecond >= score) {
jedis.zrem(DELAY_QUEUE, value);
System.out.println(sdf.format(new Date()) + " removed key:" + value);
}
if (jedis.zcard(DELAY_QUEUE) <= 0) {
System.out.println(sdf.format(new Date()) + " zset empty ");
return;
}
Thread.sleep(1000);
}
}
我们看到执行结果符合预期
2020-05-07 13:24:09 add finished.
2020-05-07 13:24:19 removed key:order1
2020-05-07 13:24:29 removed key:order2
2020-05-07 13:24:39 removed key:order3
2020-05-07 13:24:39 zset empty
4、Redis 过期回调
Redis 的key过期回调事件,也能达到延迟队列的效果,简单来说我们开启监听key是否过期的事件,一旦key过期会触发一个callback事件。
修改redis.conf文件开启notify-keyspace-events Ex
notify-keyspace-events Ex
Redis监听配置,注入Bean RedisMessageListenerContainer
@Configuration
public class RedisListenerConfig {
@Bean
RedisMessageListenerContainer container(RedisConnectionFactory connectionFactory) {
RedisMessageListenerContainer container = new RedisMessageListenerContainer();
container.setConnectionFactory(connectionFactory);
return container;
}
}
编写Redis过期回调监听方法,必须继承KeyExpirationEventMessageListener ,有点类似于MQ的消息监听。
@Component
public class RedisKeyExpirationListener extends KeyExpirationEventMessageListener {
public RedisKeyExpirationListener(RedisMessageListenerContainer listenerContainer) {
super(listenerContainer);
}
@Override
public void onMessage(Message message, byte[] pattern) {
String expiredKey = message.toString();
System.out.println("监听到key:" + expiredKey + "已过期");
}
}
到这代码就编写完成,非常的简单,接下来测试一下效果,在redis-cli客户端添加一个key 并给定3s的过期时间。
set xiaofu 123 ex 3
在控制台成功监听到了这个过期的key。
监听到过期的key为:xiaofu
5、RabbitMQ 延时队列
利用 RabbitMQ 做延时队列是比较常见的一种方式,而实际上RabbitMQ 自身并没有直接支持提供延迟队列功能,而是通过 RabbitMQ 消息队列的 TTL和 DXL这两个属性间接实现的。
先来认识一下 TTL和 DXL两个概念:
Time To Live(TTL) :
TTL 顾名思义:指的是消息的存活时间,RabbitMQ可以通过x-message-tt参数来设置指定Queue(队列)和 Message(消息)上消息的存活时间,它的值是一个非负整数,单位为微秒。
RabbitMQ 可以从两种维度设置消息过期时间,分别是队列和消息本身
- 设置队列过期时间,那么队列中所有消息都具有相同的过期时间。
- 设置消息过期时间,对队列中的某一条消息设置过期时间,每条消息TTL都可以不同。
如果同时设置队列和队列中消息的TTL,则TTL值以两者中较小的值为准。而队列中的消息存在队列中的时间,一旦超过TTL过期时间则成为Dead Letter(死信)。
Dead Letter Exchanges(DLX)
DLX即死信交换机,绑定在死信交换机上的即死信队列。RabbitMQ的 Queue(队列)可以配置两个参数x-dead-letter-exchange 和 x-dead-letter-routing-key(可选),一旦队列内出现了Dead Letter(死信),则按照这两个参数可以将消息重新路由到另一个Exchange(交换机),让消息重新被消费。
x-dead-letter-exchange:队列中出现Dead Letter后将Dead Letter重新路由转发到指定 exchange(交换机)。
x-dead-letter-routing-key:指定routing-key发送,一般为要指定转发的队列。
队列出现Dead Letter的情况有:
- 消息或者队列的TTL过期
- 队列达到最大长度
- 消息被消费端拒绝(basic.reject or basic.nack)
下边结合一张图看看如何实现超30分钟未支付关单功能,我们将订单消息A0001发送到延迟队列order.delay.queue,并设置x-message-tt消息存活时间为30分钟,当到达30分钟后订单消息A0001成为了Dead Letter(死信),延迟队列检测到有死信,通过配置x-dead-letter-exchange,将死信重新转发到能正常消费的关单队列,直接监听关单队列处理关单逻辑即可。
发送消息时指定消息延迟的时间
public void send(String delayTimes) {
amqpTemplate.convertAndSend("order.pay.exchange", "order.pay.queue","大家好我是延迟数据", message -> {
// 设置延迟毫秒值
message.getMessageProperties().setExpiration(String.valueOf(delayTimes));
return message;
});
}
}
设置延迟队列出现死信后的转发规则
/**
* 延时队列
*/
@Bean(name = "order.delay.queue")
public Queue getMessageQueue() {
return QueueBuilder
.durable(RabbitConstant.DEAD_LETTER_QUEUE)
// 配置到期后转发的交换
.withArgument("x-dead-letter-exchange", "order.close.exchange")
// 配置到期后转发的路由键
.withArgument("x-dead-letter-routing-key", "order.close.queue")
.build();
}
6、时间轮
前边几种延时队列的实现方法相对简单,比较容易理解,时间轮算法就稍微有点抽象了。kafka、netty都有基于时间轮算法实现延时队列,下边主要实践Netty的延时队列讲一下时间轮是什么原理。
先来看一张时间轮的原理图,解读一下时间轮的几个基本概念
wheel :时间轮,图中的圆盘可以看作是钟表的刻度。比如一圈round 长度为24秒,刻度数为 8,那么每一个刻度表示 3秒。那么时间精度就是 3秒。时间长度 / 刻度数值越大,精度越大。
当添加一个定时、延时任务A,假如会延迟25秒后才会执行,可时间轮一圈round 的长度才24秒,那么此时会根据时间轮长度和刻度得到一个圈数 round和对应的指针位置 index,也是就任务A会绕一圈指向0格子上,此时时间轮会记录该任务的round和 index信息。当round=0,index=0 ,指针指向0格子 任务A并不会执行,因为 round=0不满足要求。
所以每一个格子代表的是一些时间,比如1秒和25秒 都会指向0格子上,而任务则放在每个格子对应的链表中,这点和HashMap的数据有些类似。
Netty构建延时队列主要用HashedWheelTimer,HashedWheelTimer底层数据结构依然是使用DelayedQueue,只是采用时间轮的算法来实现。
下面我们用Netty 简单实现延时队列,HashedWheelTimer构造函数比较多,解释一下各参数的含义。
- ThreadFactory :表示用于生成工作线程,一般采用线程池;
- tickDuration和unit:每格的时间间隔,默认100ms;
- ticksPerWheel:一圈下来有几格,默认512,而如果传入数值的不是2的N次方,则会调整为大于等于该参数的一个2的N次方数值,有利于优化hash值的计算。
public HashedWheelTimer(ThreadFactory threadFactory, long tickDuration, TimeUnit unit, int ticksPerWheel) {
this(threadFactory, tickDuration, unit, ticksPerWheel, true);
}
- TimerTask:一个定时任务的实现接口,其中run方法包装了定时任务的逻辑。
- Timeout:一个定时任务提交到Timer之后返回的句柄,通过这个句柄外部可以取消这个定时任务,并对定时任务的状态进行一些基本的判断。
- Timer:是HashedWheelTimer实现的父接口,仅定义了如何提交定时任务和如何停止整个定时机制。
public class NettyDelayQueue {
public static void main(String[] args) {
final Timer timer = new HashedWheelTimer(Executors.defaultThreadFactory(), 5, TimeUnit.SECONDS, 2);
//定时任务
TimerTask task1 = new TimerTask() {
public void run(Timeout timeout) throws Exception {
System.out.println("order1 5s 后执行 ");
timer.newTimeout(this, 5, TimeUnit.SECONDS);//结束时候再次注册
}
};
timer.newTimeout(task1, 5, TimeUnit.SECONDS);
TimerTask task2 = new TimerTask() {
public void run(Timeout timeout) throws Exception {
System.out.println("order2 10s 后执行");
timer.newTimeout(this, 10, TimeUnit.SECONDS);//结束时候再注册
}
};
timer.newTimeout(task2, 10, TimeUnit.SECONDS);
//延迟任务
timer.newTimeout(new TimerTask() {
public void run(Timeout timeout) throws Exception {
System.out.println("order3 15s 后执行一次");
}
}, 15, TimeUnit.SECONDS);
}
}
从执行的结果看,order3、order3延时任务只执行了一次,而order2、order1为定时任务,按照不同的周期重复执行。
order1 5s 后执行
order2 10s 后执行
order3 15s 后执行一次
order1 5s 后执行
order2 10s 后执行
总结
为了让大家更容易理解,上边的代码写的都比较简单粗糙,几种实现方式的demo已经都提交到github 地址:https://github.com/chengxy-nds/delayqueue,感兴趣的小伙伴可以下载跑一跑。
这篇文章肝了挺长时间,写作一点也不比上班干活轻松,查证资料反复验证demo的可行性,搭建各种RabbitMQ、Redis环境,只想说我太难了!
可能写的有不够完善的地方,如哪里有错误或者不明了的,欢迎大家踊跃指正!!!
最后
原创不易,码字不易,来点个赞吧~
小福利:
整理了几百本各类技术电子书相送 ,嘘~,「免费」 送给小伙伴们,私信或者评论【666】自行领取。和一些小伙伴们建了一个技术交流群,一起探讨技术、分享技术资料,旨在共同学习进步。
相关推荐
- Redis合集-使用benchmark性能测试
-
采用开源Redis的redis-benchmark工具进行压测,它是Redis官方的性能测试工具,可以有效地测试Redis服务的性能。本次测试使用Redis官方最新的代码进行编译,详情请参见Redis...
- Java简历总被已读不回?面试挂到怀疑人生?这几点你可能真没做好
-
最近看了几十份简历,发现大部分人不是技术差,而是不会“卖自己”——一、简历死穴:你写的不是经验,是岗位说明书!反面教材:ד使用SpringBoot开发项目”ד负责用户模块功能实现”救命写法:...
- redission YYDS(redission官网)
-
每天分享一个架构知识Redission是一个基于Redis的分布式Java锁框架,它提供了各种锁实现,包括可重入锁、公平锁、读写锁等。使用Redission可以方便地实现分布式锁。red...
- 从数据库行锁到分布式事务:电商库存防超卖的九重劫难与破局之道
-
2023年6月18日我们维护的电商平台在零点刚过3秒就遭遇了严重事故。监控大屏显示某爆款手机SKU_IPHONE13_PRO_MAX在库存仅剩500台时,订单系统却产生了1200笔有效订单。事故复盘发...
- SpringBoot系列——实战11:接口幂等性的形而上思...
-
欢迎关注、点赞、收藏。幂等性不仅是一种技术需求,更是数字文明对确定性追求的体现。在充满不确定性的网络世界中,它为我们建立起可依赖的存在秩序,这或许正是技术哲学最深刻的价值所在。幂等性的本质困境在支付系...
- 如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享
-
如何优化系统架构设计缓解流量压力提升并发性能?Java实战分享在高流量场景下。首先,我需要回忆一下常见的优化策略,比如负载均衡、缓存、数据库优化、微服务拆分这些。不过,可能还需要考虑用户的具体情况,比...
- Java面试题: 项目开发中的有哪些成长?该如何回答
-
在Java面试中,当被问到“项目中的成长点”时,面试官不仅想了解你的技术能力,更希望看到你的问题解决能力、学习迭代意识以及对项目的深度思考。以下是回答的策略和示例,帮助你清晰、有说服力地展示成长点:一...
- 互联网大厂后端必看!Spring Boot 如何实现高并发抢券逻辑?
-
你有没有遇到过这样的情况?在电商大促时,系统上线了抢券活动,结果活动刚一开始,服务器就不堪重负,出现超卖、系统崩溃等问题。又或者用户疯狂点击抢券按钮,最后却被告知无券可抢,体验极差。作为互联网大厂的后...
- 每日一题 |10W QPS高并发限流方案设计(含真实代码)
-
面试场景还原面试官:“如果系统要承载10WQPS的高并发流量,你会如何设计限流方案?”你:“(稳住,我要从限流算法到分布式架构全盘分析)…”一、为什么需要限流?核心矛盾:系统资源(CPU/内存/数据...
- Java面试题:服务雪崩如何解决?90%人栽了
-
服务雪崩是指微服务架构中,由于某个服务出现故障,导致故障在服务之间不断传递和扩散,最终造成整个系统崩溃的现象。以下是一些解决服务雪崩问题的常见方法:限流限制请求速率:通过限流算法(如令牌桶算法、漏桶算...
- 面试题官:高并发经验有吗,并发量多少,如何回复?
-
一、有实际高并发经验(建议结构)直接量化"在XX项目中,系统日活用户约XX万,核心接口峰值QPS达到XX,TPS处理能力为XX/秒。通过压力测试验证过XX并发线程下的稳定性。"技术方案...
- 瞬时流量高并发“保命指南”:这样做系统稳如泰山,老板跪求加薪
-
“系统崩了,用户骂了,年终奖飞了!”——这是多少程序员在瞬时大流量下的真实噩梦?双11秒杀、春运抢票、直播带货……每秒百万请求的冲击,你的代码扛得住吗?2025年了,为什么你的系统一遇高并发就“躺平”...
- 其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。
-
其实很多Java工程师不是能力不够,是没找到展示自己的正确姿势。比如上周有个小伙伴找我,五年经验但简历全是'参与系统设计''优化接口性能'这种空话。我就问他:你做的秒杀...
- PHP技能评测(php等级考试)
-
公司出了一些自我评测的PHP题目,现将题目和答案记录于此,以方便记忆。1.魔术函数有哪些,分别在什么时候调用?__construct(),类的构造函数__destruct(),类的析构函数__cal...
- 你的简历在HR眼里是青铜还是王者?
-
你的简历在HR眼里是青铜还是王者?兄弟,简历投了100份没反应?面试总在第三轮被刷?别急着怀疑人生,你可能只是踩了这些"隐形求职雷"。帮3630+程序员改简历+面试指导和处理空窗期时间...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)