百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

flink维表查询redis之flink-connector-redis

mhr18 2024-10-22 12:39 34 浏览 0 评论

插件名称:flink-connector-redis

插件地址:https://github.com/jeff-zou/flink-connector-redis.git

无法翻墙:https://gitee.com/jeff-zou/flink-connector-redis.git

项目介绍

基于bahir-flink二次开发,相对bahir调整的内容有:增加支持Flink高版本(包括1.12,1.13,1.14等)、增加Table/SQL API、 增加维表查询支持、增加查询缓存(支持增量与全量)、统一过期策略、写入并发数等。

因bahir使用的flink接口版本较老,所以改动较大,开发过程中参考了腾讯云与阿里云两家产商的流计算产品,取两家之长,并增加了更丰富的功能,包括更多的redis操作命令和更多的redis服务类型,如:simple sentinel cluster。

支持功能对应redis的操作命令有:

插入

维表查询

set

get

hset

hget

rpush lpush


incrBy decrBy hincrBy zincrby


sadd zadd pfadd(hyperloglog)


publish


zrem srem


del hdel


使用方法:

在命令行执行 mvn package -DskipTests打包后,将生成的包flink-connector-redis-1.1.0.jar引入flink lib中即可,无需其它设置。


项目依赖jedis 3.7.1,如flink环境无jedis,则使用flink-connector-redis-1.1.0-jar-with-dependencies.jar


开发环境工程直接引用:

<dependency>
    <groupId>io.github.jeff-zou</groupId>
    <artifactId>flink-connector-redis</artifactId>
    <version>1.1.0</version>
</dependency>

使用说明:

value.data.structure = column(默认)

无需通过primary key来映射redis中的Key,直接由ddl中的字段顺序来决定Key,如:

create table sink_redis(username VARCHAR, passport VARCHAR)  with ('command'='set') 
其中username为key, passport为value.

create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR)  with ('command'='hset') 
其中name为map结构的key, subject为field, score为value.

value.data.structure = row

整行内容保存至value并以'\01'分割

create table sink_redis(username VARCHAR, passport VARCHAR)  with ('command'='set') 
其中username为key, username\01passport为value.

create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR)  with ('command'='hset') 
其中name为map结构的key, subject为field, name\01subject\01score为value.

with参数说明:

字段

默认值

类型

说明

connector

(none)

String

redis

host

(none)

String

Redis IP

port

6379

Integer

Redis 端口

password

null

String

如果没有设置,则为 null

database

0

Integer

默认使用 db0

maxTotal

2

Integer

最大连接数

maxIdle

2

Integer

最大保持连接数

minIdle

1

Integer

最小保持连接数

timeout

2000

Integer

连接超时时间,单位 ms,默认 1s

cluster-nodes

(none)

String

集群ip与端口,当redis-mode为cluster时不为空,如:10.11.80.147:7000,10.11.80.147:7001,10.11.80.147:8000

command

(none)

String

对应上文中的redis命令

redis-mode

(none)

Integer

mode类型: single cluster

lookup.cache.max-rows

-1

Integer

查询缓存大小,减少对redis重复key的查询

lookup.cache.ttl

-1

Integer

查询缓存过期时间,单位为秒, 开启查询缓存条件是max-rows与ttl都不能为-1

lookup.max-retries

1

Integer

查询失败重试次数

lookup.cache.load-all

false

Boolean

开启全量缓存,当命令为hget时,将从redis map查询出所有元素并保存到cache中,用于解决缓存穿透问题

sink.max-retries

1

Integer

写入失败重试次数

sink.parallelism

(none)

Integer

写入并发数

value.data.structure

column

String

column: value值来自某一字段 (如, set: key值取自DDL定义的第一个字段, value值取自第二个字段)
row: 将整行内容保存至value并以'\01'分割

在线调试SQL时,用于限制sink资源使用的参数:

Field

Default

Type

Description

sink.limit

false

Boolean

限制开头

sink.limit.max-num

10000

Integer

taskmanager内每个slot可以写的最大数据量

sink.limit.interval

100

String

taskmanager内每个slot写入数据间隔 milliseconds

sink.limit.max-online

30 * 60 * 1000L

Long

taskmanager内每个slot最大在线时间, milliseconds

集群类型为sentinel时额外连接参数:

字段

默认值

类型

说明

master.name

(none)

String

主名

sentinels.info

(none)

String


sentinels.password

none)

String


数据类型转换

flink type

redis row converter

CHAR

String

VARCHAR

String

String

String

BOOLEAN

String String.valueOf(boolean val)
boolean Boolean.valueOf(String str)

BINARY

String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str)

VARBINARY

String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str)

DECIMAL

String BigDecimal.toString
DecimalData DecimalData.fromBigDecimal(new BigDecimal(String str),int precision, int scale)

TINYINT

String String.valueOf(byte val)
byte Byte.valueOf(String str)

SMALLINT

String String.valueOf(short val)
short Short.valueOf(String str)

INTEGER

String String.valueOf(int val)
int Integer.valueOf(String str)

DATE

String the day from epoch as int
date show as 2022-01-01

TIME

String the millisecond from 0'clock as int
time show as 04:04:01.023

BIGINT

String String.valueOf(long val)
long Long.valueOf(String str)

FLOAT

String String.valueOf(float val)
float Float.valueOf(String str)

DOUBLE

String String.valueOf(double val)
double Double.valueOf(String str)

TIMESTAMP

String the millisecond from epoch as long
timestamp TimeStampData.fromEpochMillis(Long.valueOf(String str))

使用示例:

  • 维表查询:
create table sink_redis(name varchar, level varchar, age varchar) with ( 'connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single','password'='******','command'='hset');

-- 先在redis中插入数据,相当于redis命令: hset 3 3 100 --
insert into sink_redis select * from (values ('3', '3', '100'));
                
create table dim_table (name varchar, level varchar, age varchar) with ('connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single', 'password'='*****','command'='hget', 'maxIdle'='2', 'minIdle'='1', 'lookup.cache.max-rows'='10', 'lookup.cache.ttl'='10', 'lookup.max-retries'='3');
    
-- 随机生成10以内的数据作为数据源 --
-- 其中有一条数据会是: username = 3  level = 3, 会跟上面插入的数据关联 -- 
create table source_table (username varchar, level varchar, proctime as procTime()) with ('connector'='datagen',  'rows-per-second'='1',  'fields.username.kind'='sequence',  'fields.username.start'='1',  'fields.username.end'='10', 'fields.level.kind'='sequence',  'fields.level.start'='1',  'fields.level.end'='10');

create table sink_table(username varchar, level varchar,age varchar) with ('connector'='print');

insert into
    sink_table
select
    s.username,
    s.level,
    d.age
from
    source_table s
left join dim_table for system_time as of s.proctime as d on
    d.name = s.username
    and d.level = s.level;
-- username为3那一行会关联到redis内的值,输出为: 3,3,100   
  • 多字段的维表关联查询

很多情况维表有多个字段,本实例展示如何利用'value.data.structure'='row'写多字段并关联查询。

-- 创建表
create table sink_redis(uid VARCHAR,score double,score2 double )
with ( 'connector' = 'redis',
            'host' = '10.11.69.176',
            'port' = '6379',
            'redis-mode' = 'single',
            'password' = '****',
            'command' = 'SET',
            'value.data.structure' = 'row');  -- 'value.data.structure'='row':整行内容保存至value并以'\01'分割
-- 写入测试数据,score、score2为需要被关联查询出的两个维度
insert into sink_redis select * from (values ('1', 10.3, 10.1));

-- 在redis中,value的值为: "1\x0110.3\x0110.1" --
-- 写入结束 --

-- create join table --
create table join_table with ('command'='get', 'value.data.structure'='row') like sink_redis

-- create result table --
create table result_table(uid VARCHAR, username VARCHAR, score double, score2 double) with ('connector'='print')

-- create source table --
create table source_table(uid VARCHAR, username VARCHAR, proc_time as procTime()) with ('connector'='datagen', 'fields.uid.kind'='sequence', 'fields.uid.start'='1', 'fields.uid.end'='2')

-- 关联查询维表,获得维表的多个字段值 --
insert
    into
    result_table
select
    s.uid,
    s.username,
    j.score, -- 来自维表
    j.score2 -- 来自维表
from
    source_table as s
join join_table for system_time as of s.proc_time as j on
    j.uid = s.uid
    
result:
2> +I[2, 1e0fe885a2990edd7f13dd0b81f923713182d5c559b21eff6bda3960cba8df27c69a3c0f26466efaface8976a2e16d9f68b3, null, null]
1> +I[1, 30182e00eca2bff6e00a2d5331e8857a087792918c4379155b635a3cf42a53a1b8f3be7feb00b0c63c556641423be5537476, 10.3, 10.1]
  • DataStream查询方式
  • 示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.datastream.DataStreamTest.java

    hset示例,相当于redis命令:
    hset tom math 150
Configuration configuration = new Configuration();
configuration.setString(REDIS_MODE, REDIS_CLUSTER);
configuration.setString(REDIS_COMMAND, RedisCommand.HSET.name());

RedisSinkMapper redisMapper = (RedisSinkMapper)RedisHandlerServices
.findRedisHandler(RedisMapperHandler.class, configuration.toMap())
.createRedisMapper(configuration);

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

GenericRowData genericRowData = new GenericRowData(3);
genericRowData.setField(0, "tom");
genericRowData.setField(1, "math");
genericRowData.setField(2, "152");
DataStream<GenericRowData> dataStream = env.fromElements(genericRowData, genericRowData);

RedisCacheOptions redisCacheOptions = new RedisCacheOptions.Builder().setCacheMaxSize(100).setCacheTTL(10L).build();
FlinkJedisConfigBase conf = getLocalRedisClusterConfig();
RedisSinkFunction redisSinkFunction = new RedisSinkFunction<>(conf, redisMapper, redisCacheOptions);

dataStream.addSink(redisSinkFunction).setParallelism(1);
env.execute("RedisSinkTest");
  • redis-cluster写入示例
  • 示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.table.SQLTest.java

    set示例,相当于redis命令:
    set test test11
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, environmentSettings);

String ddl = "create table sink_redis(username VARCHAR, passport VARCHAR) with ( 'connector'='redis', " +
              "'cluster-nodes'='10.11.80.147:7000,10.11.80.147:7001','redis- mode'='cluster','password'='******','command'='set')" ;

tEnv.executeSql(ddl);
String sql = " insert into sink_redis select * from (values ('test', 'test11'))";
TableResult tableResult = tEnv.executeSql(sql);
tableResult.getJobClient().get()
.getJobExecutionResult()
.get();

开发与测试环境

ide: IntelliJ IDEA

code format: google-java-format + Save Actions

code check: CheckStyle

flink 1.12/1.13/1.14+

jdk1.8 jedis3.7.1

如果需要flink 1.12版本支持,请切换到分支flink-1.12

<dependency>
    <groupId>io.github.jeff-zou</groupId>
    <artifactId>flink-connector-redis</artifactId>
    <version>1.1.1-1.12</version>
</dependency>

相关推荐

【预警通报】关于WebLogic存在远程代码执行高危漏洞的预警通报

近日,Oracle官方发布了2021年1月关键补丁更新公告CPU(CriticalPatchUpdate),共修复了包括CVE-2021-2109(WeblogicServer远程代码执行漏洞)...

医院信息系统突发应急演练记录(医院信息化应急演练)

信息系统突发事件应急预案演练记录演练内容信息系统突发事件应急预案演练参与人员信息科参与科室:全院各部门日期xxxx-xx-xx时间20:00至24:00地点信息科记录:xxx1、...

一文掌握怎么利用Shell+Python实现完美版的多数据源备份程序

简介:在当今数字化时代,无论是企业还是个人,数据的安全性和业务的连续性都是至关重要的。数据一旦丢失,可能会造成无法估量的损失。因此,如何有效地对分布在不同位置的数据进行备份,尤其是异地备份,成为了一个...

docker搭建系统环境(docker搭建centos)

Docker安装(CentOS7)1.卸载旧版Docker#检查已安装版本yumlistinstalled|grepdocker#卸载旧版本yumremove-ydocker.x...

基础篇:数据库 SQL 入门教程(sql数据库入门书籍推荐)

SQL介绍什么是SQLSQL指结构化查询语言,是用于访问和处理数据库的标准的计算机语言。它使我们有能力访问数据库,可与多种数据库程序协同工作,如MSAccess、DB2、Informix、M...

Java21杀手级新特性!3行代码性能翻倍

导语某券商系统用这招,交易延迟从12ms降到0.8ms!本文揭秘Oracle官方未公开的Record模式匹配+虚拟线程深度优化+向量API神操作,代码量直降70%!一、Record模式匹配(代码量↓8...

一文读懂JDK21的虚拟线程(java虚拟线程)

概述JDK21已于2023年9月19日发布,作为Oracle标准Java实现的一个LTS版本发布,发布了15想新特性,其中虚拟线程呼声较高。虚拟线程是JDK21中引入的一项重要特性,它是一种轻量级的...

效率!MacOS下超级好用的Linux虚拟工具:Lima

对于MacOS用户来说,搭建Linux虚拟环境一直是件让人头疼的事。无论是VirtualBox还是商业的VMware,都显得过于笨重且配置复杂。今天,我们要介绍一个轻巧方便的纯命令行Linux虚拟工具...

所谓SaaS(所谓三维目标一般都应包括)

2010年前后,一个科技媒体的主编写一些关于云计算的概念性问题,就可以作为头版头条了。那时候的云计算,更多的还停留在一些概念性的问题上。而基于云计算而生的SaaS更是“养在深闺人未识”,一度成为被IT...

ORA-00600 「25027」 「x」报错(报错0xc0000001)

问题现象:在用到LOB大对象的业务中,进行数据的插入,失败了,在报警文件中报错:ORA-00600:内部错误代码,参数:[25027],[10],[0],[],[],[],[],[...

安卓7源码编译(安卓源码编译环境lunch失败,uname命令找不到)

前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...

编译安卓源码(编译安卓源码 电脑配置)

前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...

360 Vulcan Team首战告捷 以17.5万美金强势领跑2019“天府杯“

2019年11月16日,由360集团、百度、腾讯、阿里巴巴、清华大学与中科院等多家企业和研究机构在成都联合主办了2019“天府杯”国际网络安全大赛暨2019天府国际网络安全高峰论坛。而开幕当日最激荡人...

Syslog 日志分析与异常检测技巧(syslog发送日志配置)

系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Gr...

从Oracle演进看数据库技术的发展(从oracle演进看数据库技术的发展的过程)

数据库技术发展本质上是应用需求驱动与基础架构演进的双向奔赴,如何分析其技术发展的脉络和方向?考虑到oracle数据库仍然是这个领域的王者,以其为例,管中窥豹,对其从Oracle8i到23ai版本的核...

取消回复欢迎 发表评论: