百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

高并发架构系列:数据库主从同步的3种一致性方案实现,优劣比较

mhr18 2024-10-11 13:10 27 浏览 0 评论

数据主从同步的由来

互联网的很多业务,特别是在高并发的场景下,基本都是读远远大于写,如果数据库读和写的压力都同在一台主机上,这显然不太合理。

于是,把一台数据库主机分为单独的一台写主库(主要负责写操作),而把读的数据库压力分配给读的从库,而且读从库可以变为多台,这就是读写分离的典型场景如下:

为了进一步的降低数据库端的压力(高并发的瓶颈),这个时候也会在业务层部署分布式缓存集群(redis、memcached)等,把读的压力转移给应用服务器端,其实与数据主从的设计是遵循同一个原则,降低后端数据库的压力。

问题:

读写分离提高了资源的利用效率的同时也引出了一个问题,就是由于延时(网络传输,操作)而引起的数据库主从不一致的问题,以下会详细谈相关的数据一致性解决方案。

数据同步一致性解决方案

1.半同步复制

办法就是等主从同步完成之后,等主库上的写请求再返回,这就是常说的“半同步复制"。

实现方案

mysql的半同步复制方案,下面我以mysql为例介绍。

MySQL半同步复制

MySQL的Replication默认是一个异步复制的过程,从MySQL5.5开始,MySQL以插件的形式支持半同步复制,我先谈下异步复制,这样可以更好的理解半同步复制。

1)异步复制

MySQL默认的复制是异步的,主库在执行完客户端提交的事务后会立即将结果返给给客户端,并不关心从库是否已经接收并处理,这样就会有一个问题,主如果crash掉了,此时主上已经提交的事务可能并没有传到从库上。

2)半同步复制

介于异步复制和全同步复制之间,主库在执行完客户端提交的事务后不是立刻返回给客户端,而是等待至少一个从库接收到并写到relay log中才返回给客户端。相对于异步复制,半同步复制提高了数据的安全性,同时它也造成了一定程度的延迟,这个延迟最少是一个TCP/IP往返的时间。所以,半同步复制最好在低延时的网络中使用。

半同步复制原理:

  • 事务在主库写完binlog后需要从库返回一个已接受,才放回给客户端
  • mysql5.5版本以后,以插件的形式存在,需要单独安装
  • 确保事务提交后binlog至少传输到一个从库
  • 不保证从库应用完成这个事务的binlog
  • 性能有一定的降低
  • 网络异常或从库宕机,卡主库,直到超时或从库恢复

该方案优点:

利用数据库原生功能,比较简单

该方案缺点:

主库的写请求时延会增长,吞吐量会降低


2.数据库中间件

流程:

1)所有的读写都走数据库中间件,通常情况下,写请求路由到主库,读请求路由到从库

2)记录所有路由到写库的key,在主从同步时间窗口内(假设是500ms),如果有读请求访问中间件,此时有可能从库还是旧数据,就把这个key上的读请求路由到主库。

3)在主从同步时间过完后,对应key的读请求继续路由到从库。

相关的中间件有:

1)canal:是阿里巴巴旗下的一款开源项目,纯Java开发,基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL。

2)otter:也是阿里开源的一个分布式数据库同步系统,尤其是在跨机房数据库同步方面,有很强大的功能。它是基于数据库增量日志解析,实时将数据同步到本机房或跨机房的mysql/oracle数据库。

两者的区别在于:

otter目前嵌入式依赖canal,部署为同一个jvm,目前设计为不产生Relay Log。

otter目前允许自定义同步逻辑,解决各类需求。

该方案优点

能保证绝对一致

该方案缺点:

数据库中间件的成本较高


缓存记录写key法

写流程:

1)如果key要发生写操作,记录在cache里,并设置“经验主从同步时间”的cache超时时间,例如500ms

2)然后修改主数据库

读流程:

1)先到缓存里查看,对应key有没有相关数据

2)有相关数据,说明缓存命中,这个key刚发生过写操作,此时需要将请求路由到主库读最新的数据。

3)如果缓存没有命中,说明这个key上近期没有发生过写操作,此时将请求路由到从库,继续读写分离。

该方案优点:

相对数据库中间件,成本较低

该方案缺点:

为了保证“一致性”,引入了一个cache组件,并且读写数据库时都多了缓存操作。

以上就是数据库主从同步一致性方案详解,更多分布式大数据分布式文件系统和分布式数据库的一致性可以参考:

阿里P8架构师谈:分布式数据库数据一致性的原理、与技术实现方案

更多利用分布式缓存、异步消息等方式解决高并发场景,具体的内容如下:


更多高并发架构专题

该资料获取方式

关注+转发后,私信关键词 【高并发】即可获取!

重要的话讲两遍,转发、转发后再发私信,才可以拿到哦!

相关推荐

订单超时自动取消业务的 N 种实现方案,从原理到落地全解析

在分布式系统架构中,订单超时自动取消机制是保障业务一致性的关键组件。某电商平台曾因超时处理机制缺陷导致日均3000+订单库存锁定异常,直接损失超50万元/天。本文将从技术原理、实现细节、...

使用Spring Boot 3开发时,如何选择合适的分布式技术?

作为互联网大厂的后端开发人员,当你满怀期待地用上SpringBoot3,准备在项目中大显身手时,却发现一个棘手的问题摆在面前:面对众多分布式技术,究竟该如何选择,才能让SpringBoot...

数据库内存爆满怎么办?99%的程序员都踩过这个坑!

你的数据库是不是又双叒叕内存爆满了?!服务器监控一片红色警告,老板在群里@所有人,运维同事的电话打爆了手机...这种场景是不是特别熟悉?别慌!作为一个在数据库优化这条路上摸爬滚打了10年的老司机,今天...

springboot利用Redisson 实现缓存与数据库双写不一致问题

使用了Redisson来操作Redis分布式锁,主要功能是从缓存和数据库中获取商品信息,以下是针对并发时更新缓存和数据库带来不一致问题的解决方案1.基于读写锁和删除缓存策略在并发更新场景下,...

外贸独立站数据库炸了?对象缓存让你起死回生

上周黑五,一个客户眼睁睁看着服务器CPU飙到100%——每次页面加载要查87次数据库。这让我想起2024年Pantheon的测试:Redis缓存能把WooCommerce查询速度提升20倍。跨境电商最...

手把手教你在 Spring Boot3 里纯编码实现自定义分布式锁

为什么要自己实现分布式锁?你是不是早就受够了引入各种第三方依赖时的繁琐?尤其是分布式锁这块,每次集成Redisson或者Zookeeper,都得额外维护一堆配置,有时候还会因为版本兼容问题头疼半...

如何设计一个支持百万级实时数据推送的WebSocket集群架构?

面试解答:要设计一个支持百万级实时数据推送的WebSocket集群架构,需从**连接管理、负载均衡、水平扩展、容灾恢复**四个维度切入:连接层设计-**长连接优化**:采用Netty或Und...

Redis数据结构总结——面试最常问到的知识点

Redis作为主流的nosql存储,面试时经常会问到。其主要场景是用作缓存,分布式锁,分布式session,消息队列,发布订阅等等。其存储结构主要有String,List,Set,Hash,Sort...

skynet服务的缺陷 lua死循环

服务端高级架构—云风的skynet这边有一个关于云风skynet的视频推荐给大家观看点击就可以观看了!skynet是一套多人在线游戏的轻量级服务端框架,使用C+Lua开发。skynet的显著优点是,...

七年Java开发的一路辛酸史:分享面试京东、阿里、美团后的心得

前言我觉得有一个能够找一份大厂的offer的想法,这是很正常的,这并不是我们的饭后谈资而是每个技术人的追求。像阿里、腾讯、美团、字节跳动、京东等等的技术氛围与技术规范度还是要明显优于一些创业型公司...

mysql mogodb es redis数据库之间的区别

1.MySQL应用场景概念:关系型数据库,基于关系模型,使用表和行存储数据。优点:支持ACID事务,数据具有很高的一致性和完整性。缺点:垂直扩展能力有限,需要分库分表等方式扩展。对于复杂的查询和大量的...

redis,memcached,nginx网络组件

1.理解阻塞io,非阻塞io,同步io,异步io的区别2.理解BIO和AIO的区别io多路复用只负责io检测,不负责io操作阻塞io中的write,能写多少是多少,只要写成功就返回,譬如准备写500字...

SpringBoot+Vue+Redis实现验证码功能

一个小时只允许发三次验证码。一次验证码有效期二分钟。SpringBoot整合Redis...

AWS MemoryDB 可观测最佳实践

AWSMemoryDB介绍AmazonMemoryDB是一种完全托管的、内存中数据存储服务,专为需要极低延迟和高吞吐量的应用程序而设计。它与Redis和Memcached相似,但具有更...

从0构建大型AI推荐系统:实时化引擎从工具到生态的演进

在AI浪潮席卷各行各业的今天,推荐系统正从幕后走向前台,成为用户体验的核心驱动力。本文将带你深入探索一个大型AI推荐系统从零起步的全过程,揭示实时化引擎如何从单一工具演进为复杂生态的关键路径。无论你是...

取消回复欢迎 发表评论: