百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

MyBatis原生批量插入的坑与解决方案

mhr18 2024-09-13 20:40 34 浏览 0 评论

前面的文章咱们讲了 MyBatis 批量插入的 3 种方法:循环单次插入、MyBatis Plus 批量插入、MyBatis 原生批量插入,详情请点击《MyBatis 批量插入数据的 3 种方法!》

但这篇文章也有不完美之处,使用 「循环单次插入」的性能太低,使用「MyBatis Plus 批量插入」性能还行,但要额外的引入 MyBatis Plus 框架,使用「MyBatis 原生批量插入」性能最好,但在插入大量数据时会导致程序报错,那么,今天咱们就会提供一个更优的解决方案。

原生批量插入的“坑”

首先,我们来看一下 MyBatis 原生批量插入中的坑,当我们批量插入 10 万条数据时,实现代码如下:

import com.example.demo.model.User;
import com.example.demo.service.impl.UserServiceImpl;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.ArrayList;
import java.util.List;

@SpringBootTest
class UserControllerTest {

    // 最大循环次数
    private static final int MAXCOUNT = 100000;

    @Autowired
    private UserServiceImpl userService;
    
    /**
     * 原生自己拼接 SQL,批量插入
     */
    @Test
    void saveBatchByNative() {
        long stime = System.currentTimeMillis(); // 统计开始时间
        List<User> list = new ArrayList<>();
        for (int i = 0; i < MAXCOUNT; i++) {
            User user = new User();
            user.setName("test:" + i);
            user.setPassword("123456");
            list.add(user);
        }
        // 批量插入
        userService.saveBatchByNative(list);
        long etime = System.currentTimeMillis(); // 统计结束时间
        System.out.println("执行时间:" + (etime - stime));
    }
}

核心文件 UserMapper.xml 中的实现代码如下:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.example.demo.mapper.UserMapper">
    <insert id="saveBatchByNative">
        INSERT INTO `USER`(`NAME`,`PASSWORD`) VALUES
        <foreach collection="list" separator="," item="item">
            (#{item.name},#{item.password})
        </foreach>
    </insert>

</mapper>

当我们开心地运行以上程序时,就出现了以下的一幕:

沃,程序竟然报错了!


这是因为使用 MyBatis 原生批量插入拼接的插入 SQL 大小是 4.56M,而默认情况下 MySQL 可以执行的最大 SQL 为 4M,那么在程序执行时就会报错了。

解决方案

以上的问题就是因为批量插入时拼接的 SQL 文件太多了,所以导致 MySQL 的执行报错了。那么我们第一时间想到的解决方案就是将大文件分成 N 个小文件,这样就不会因为 SQL 太大而导致执行报错了。也就是说,我们可以将待插入的 List 集合分隔为多个小 List 来执行批量插入的操作,而这个操作过程就叫做 List 分片。


有了处理思路之后,接下来就是实践了,那如何对集合进行分片操作呢?


分片操作的实现方式有很多种,这个我们后文再讲,接下来我们使用最简单的方式,也就是 Google 提供的 Guava 框架来实现分片的功能。

分片 Demo 实战

要实现分片功能,第一步我们先要添加 Guava 框架的支持,在 pom.xml 中添加以下引用:

<!-- google guava 工具类 -->
<!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
<dependency>
  <groupId>com.google.guava</groupId>
  <artifactId>guava</artifactId>
  <version>31.0.1-jre</version>
</dependency>

接下来我们写一个小小的 demo,将以下 7 个人名分为 3 组(每组最多 3 个),实现代码如下:

import com.google.common.collect.Lists;

import java.util.Arrays;
import java.util.List;

/**
 * Guava 分片
 */
public class PartitionByGuavaExample {
    // 原集合
    private static final List<String> OLD_LIST = Arrays.asList(
            "唐僧,悟空,八戒,沙僧,曹操,刘备,孙权".split(","));

    public static void main(String[] args) {
        // 集合分片
        List<List<String>> newList = Lists.partition(OLD_LIST, 3);
        // 打印分片集合
        newList.forEach(i -> {
            System.out.println("集合长度:" + i.size());
        });
    }
}

以上程序的执行结果如下:

从上述结果可以看出,我们只需要使用 Guava 提供的 Lists.partition 方法就可以很轻松的将一个集合进行分片了。

原生批量插入分片实现

那接下来,就是改造我们的 MyBatis 批量插入代码了,具体实现如下:

@Test
void saveBatchByNativePartition() {
    long stime = System.currentTimeMillis(); // 统计开始时间
    List<User> list = new ArrayList<>();
    // 构建插入数据
    for (int i = 0; i < MAXCOUNT; i++) {
        User user = new User();
        user.setName("test:" + i);
        user.setPassword("123456");
        list.add(user);
    }
    // 分片批量插入
    int count = (int) Math.ceil(MAXCOUNT / 1000.0); // 分为 n 份,每份 1000 条
    List<List<User>> listPartition = Lists.partition(list, count);
    // 分片批量插入
    for (List<User> item : listPartition) {
        userService.saveBatchByNative(item);
    }
    long etime = System.currentTimeMillis(); // 统计结束时间
    System.out.println("执行时间:" + (etime - stime));
}

执行以上程序,最终的执行结果如下:

从上图可以看出,之前批量插入时的异常报错不见了,并且此实现方式的执行效率竟比 MyBatis Plus 的批量插入的执行效率要高,MyBatis Plus 批量插入 10W 条数据的执行时间如下:

总结

本文我们演示了 MyBatis 原生批量插入时的问题:可能会因为插入的数据太多从而导致运行失败,我们可以通过分片的方式来解决此问题,分片批量插入的实现步骤如下:

  1. 计算出分片的数量(分为 N 批);
  2. 使用 Lists.partition 方法将集合进行分片(分为 N 个集合);
  3. 循环将分片的集合进行批量插入的操作。

关注公众号「Java中文社群」查看更多 MyBatis 和 Spring Boot 的系列文章。

相关推荐

【预警通报】关于WebLogic存在远程代码执行高危漏洞的预警通报

近日,Oracle官方发布了2021年1月关键补丁更新公告CPU(CriticalPatchUpdate),共修复了包括CVE-2021-2109(WeblogicServer远程代码执行漏洞)...

医院信息系统突发应急演练记录(医院信息化应急演练)

信息系统突发事件应急预案演练记录演练内容信息系统突发事件应急预案演练参与人员信息科参与科室:全院各部门日期xxxx-xx-xx时间20:00至24:00地点信息科记录:xxx1、...

一文掌握怎么利用Shell+Python实现完美版的多数据源备份程序

简介:在当今数字化时代,无论是企业还是个人,数据的安全性和业务的连续性都是至关重要的。数据一旦丢失,可能会造成无法估量的损失。因此,如何有效地对分布在不同位置的数据进行备份,尤其是异地备份,成为了一个...

docker搭建系统环境(docker搭建centos)

Docker安装(CentOS7)1.卸载旧版Docker#检查已安装版本yumlistinstalled|grepdocker#卸载旧版本yumremove-ydocker.x...

基础篇:数据库 SQL 入门教程(sql数据库入门书籍推荐)

SQL介绍什么是SQLSQL指结构化查询语言,是用于访问和处理数据库的标准的计算机语言。它使我们有能力访问数据库,可与多种数据库程序协同工作,如MSAccess、DB2、Informix、M...

Java21杀手级新特性!3行代码性能翻倍

导语某券商系统用这招,交易延迟从12ms降到0.8ms!本文揭秘Oracle官方未公开的Record模式匹配+虚拟线程深度优化+向量API神操作,代码量直降70%!一、Record模式匹配(代码量↓8...

一文读懂JDK21的虚拟线程(java虚拟线程)

概述JDK21已于2023年9月19日发布,作为Oracle标准Java实现的一个LTS版本发布,发布了15想新特性,其中虚拟线程呼声较高。虚拟线程是JDK21中引入的一项重要特性,它是一种轻量级的...

效率!MacOS下超级好用的Linux虚拟工具:Lima

对于MacOS用户来说,搭建Linux虚拟环境一直是件让人头疼的事。无论是VirtualBox还是商业的VMware,都显得过于笨重且配置复杂。今天,我们要介绍一个轻巧方便的纯命令行Linux虚拟工具...

所谓SaaS(所谓三维目标一般都应包括)

2010年前后,一个科技媒体的主编写一些关于云计算的概念性问题,就可以作为头版头条了。那时候的云计算,更多的还停留在一些概念性的问题上。而基于云计算而生的SaaS更是“养在深闺人未识”,一度成为被IT...

ORA-00600 「25027」 「x」报错(报错0xc0000001)

问题现象:在用到LOB大对象的业务中,进行数据的插入,失败了,在报警文件中报错:ORA-00600:内部错误代码,参数:[25027],[10],[0],[],[],[],[],[...

安卓7源码编译(安卓源码编译环境lunch失败,uname命令找不到)

前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...

编译安卓源码(编译安卓源码 电脑配置)

前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...

360 Vulcan Team首战告捷 以17.5万美金强势领跑2019“天府杯“

2019年11月16日,由360集团、百度、腾讯、阿里巴巴、清华大学与中科院等多家企业和研究机构在成都联合主办了2019“天府杯”国际网络安全大赛暨2019天府国际网络安全高峰论坛。而开幕当日最激荡人...

Syslog 日志分析与异常检测技巧(syslog发送日志配置)

系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Gr...

从Oracle演进看数据库技术的发展(从oracle演进看数据库技术的发展的过程)

数据库技术发展本质上是应用需求驱动与基础架构演进的双向奔赴,如何分析其技术发展的脉络和方向?考虑到oracle数据库仍然是这个领域的王者,以其为例,管中窥豹,对其从Oracle8i到23ai版本的核...

取消回复欢迎 发表评论: