大厂面试冲刺,Java“实战”问题三连,你碰到了哪个?
mhr18 2025-05-27 16:11 6 浏览 0 评论
推荐学习
Java“实战”问题三连
- Java“实战”面试题1:如果用mybatis批量插入数据时需要返回主键,你是怎么做的?
- Java“实战”面试题2:在微服务中你是如何实现不同服务间session 共享的?
- Java“实战”面试题3:你了解分库分表么?分库分表一般出现在哪些场景下?
面试题1:如果用mybatis批量插入数据时需要返回主键,你是怎么做的?
需要在Mapper.xml的中标签中配置useGeneratedKeys和keyProperty两个属性,就可以在批量插入时返回主键。
比如有个表t_user,里面有 user_id,user_name,sex 这三个字段,其中user_id是自增主键。
下面是批量插入的Dao层接口:
List<String> insertUsers(@Param("list") List<UserInfo> users);
xml形式:
<insert id="insertUsers" useGeneratedKeys="true" keyProperty="user_id" resultType="String">
insert into t_user (user_name,sex)
values
<foreach collection="list" item="c" separator=",">
(#{c.user_name},#{c.sex})
</foreach>
</insert>
注解形式:
@Insert("<script>insert into t_user (user_name,sex) values " +
"<foreach collection='list' item='c' separator=','>(#{c.user_name},#{c.sex})</foreach></script>")
@Options(useGeneratedKeys = true, keyProperty = "user_id", resultType="String")
List<String> insertUsers(@Param("list") List<UserInfo> users);
注意:@Param里和foreach的collection里都需要写成list, 其实是源码中写死了key为list,否则批量插入后会报错说找不到"user_id"字段,而无法返回主键。
这种方式的前提是该表主键有序自增,它的原理其实就是拿到当前表中最大ID,然后结合影响行数来返回相应数据。但这就需要固定的insert场景,如果是insert ignore这种可能和实际影响行数不同的情况,就会出现不准确的情况。
面试题2:在微服务中你是如何实现不同服务间session 共享的?
在微服务中,一个完整的项目被拆分成多个不相同的独立的服务,各个服务独立部署在不同的服务器上,各自的 session 被从物理空间上隔离开了,但是经常,我们需要在不同微服务之间共享 session。
常见的方案就是 Spring Session + Redis 来实现 session 共享。将所有微服务的 session 统一保存在 Redis 上,当各个微服务对 session 有相关的读写操作时,都去操作 Redis 上的 session 。这样就实现了session 共享,Spring Session 基于 Spring 中的代理过滤器实现,使得 session 的同步操作对开发人员而言是透明的,非常简便。
同时,Spring Session已经集成了redis,可以很方便的将session存到redis中从而实现单点登陆/登出的效果,但是从微服务的角度来说,为了降低系统间的耦合度,一般会单独建一个Redis服务来搞session共享。
1、pom 文件中引入以下包
<!--spring boot 与redis应用基本环境配置 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!--spring session 与redis应用基本环境配置 -->
<dependency>
<groupId>org.springframework.session</groupId>
<artifactId>spring-session-data-redis</artifactId>
</dependency>
2、application.properties配置好 redis
spring.redis.database = 0
spring.redis.host = 192.168.xx.xx
spring.redis.port = 6379
spring.redis.password = test
spring.redis.pool.max-active = 200
spring.redis.pool.max-wait = -1
spring.redis.pool.max-idle = 10
spring.redis.pool.min-idle = 0
spring.redis.pool.timeout = 1000
在需要共享 session 的服务的启动类上,加上注解即可
@EnableRedisHttpSession
@SpringBootApplication(exclude= {DataSourceAutoConfiguration.class})
public class PhoneApplication {
public static void main(String[] args) {
SpringApplication.run(PhoneApplication.class, args);
}
}
面试题3:你了解分库分表么?分库分表一般出现在哪些场景下?
分库:由单个数据库实例拆分成多个数据库实例,将数据分布到多个数据库实例中。
分表:由单张表拆分成多张表,将数据划分到多张表内。
随着业务数据量和网站QPS日益增高,对数据库压力也越来越大,单机版数据库很快会到达存储和并发瓶颈,就需要做数据库性能方面的优化,分库分表采取的是分而治之的策略,分库目的是减轻单台MySQL实例存储压力及可扩展性,而分表是解决单张表数据过大以后查询的瓶颈问题,坦白说,这些问题也是所有关系型数据库的“硬伤”。
常用策略包括:垂直分表、水平分表、垂直分库、水平分库。
一、朴实无华的 - 分表
1、垂直分表
垂直分表,或者叫竖着切表,是不是感受到该策略是以字段为依据的!主要按照字段的活跃性、字段长度,将表中字段拆分到不同的表(主表和扩展表)中。
特点:
- 每个表的结构都不一样;
- 每个表的数据也不一样;
- 有一个关联字段,一般是主键或外键,用于关联兄弟表数据;
- 所有兄弟表的并集是该表的全量数据;
场景:
- 有几个字段属于热点字段,更新频率很高,要把这些字段单独切到一张表里,不然innodb行锁很恶心的,锁死你呀~~如用户表里的余额字段?不,我的余额就很稳定,一直是0。。
- 有大字段,如text,存储压力很大,毕竟innodb数据和索引是同一个文件;同时,我又喜欢用SELECT *,你懂得,这磁盘IO消耗的,跟玩儿似的,谁都扛不住的。
- 有明显的业务区分,或表结构设计时字段冗余;有些小伙伴看到第一点时,就发现陈哈哈是个菜鸡,用户表怎么会有余额字段?明显有问题啊!赶紧先到评论区喷陈哈哈一波~~然后笑嘻嘻地发现原来是个小尾巴,真不要脸是吧。。是的,因此不同业务我们要把具体字段拆开,这样才有利于业务后续扩展哦。
2、水平分表
水平分表,也叫“横着切”。。以行数据为依据进行切分,一般按照某列的内容进行切分。
如手机号表,我们可以通过前两位或前三位进行切分,如131、132、133 → phone_131、phone_132、phone_133,手机号有11位(100亿),量大是很正常的事儿,这年头谁家老头老太太每个手机呢是吧。这样切就把一张大表切成了好几十张小表,数据量不就下来了。有同学就问了那我怎么知道我这手机号查哪个表呢?一看你就没认真看前两行标红的点,为啥标红嘞?比如我查13100001111,那我截取前三位,动态拼接到查询的表名上,就行了。
特点:
- 每个表的结构都一样;
- 每个表的数据都不一样,没有交集;
- 所有表的并集是该表的全量数据;
场景:单表的数据量过大或增长速度很快,已经影响或即将会影响SQL查询效率,加重了CPU负担,提前到达瓶颈。记得水平分表越早越好,别问我为什么。。
二、花里胡哨的 - 分库
需要你注意的是,传统的分库和我们熟悉的集群、主从复制可不是一个事儿;多节点集群是将一个库复制成N个库,从而通过读写分离实现多个MySQL服务的负载均衡,实际是围绕一个库来搞的,这个库称为Master主库。而分库就不同了,分库是将这个主库一分为N,比如一分为二,然后针对这两个主库,再配置2N个从库节点。
3、垂直分库
纵向切库,太经典的切分方式,基于表进行切分,通常是把新的业务模块或集成公共模块拆分出去,比如我们最熟悉的单点登录、鉴权模块。熟悉的味道,记得有一次我把一些没用的表切到一个性能很好的服务器中,这服务器我专门用来学习,后来也不知被哪个狗腿子告密了~ 我**你个**,有种站出来,你个**东西。
特点:
- 每个库的表都不一样;
- 表不一样,数据就更不一样了~ 没有任何交集;
- 每个库相对独立,模块化
场景:可以抽象出单独的业务模块时,可以抽象出公共区时(如字典、公共时间、公共配置等),或者想有一台属于自己的服务器时?
4、水平分库
以行数据为依据,将一个库中的数据拆分到多个库中。大型分表体验一下?坦白说这种策略并不实用,因为会对后台开发很不友好,有很多坑,不建议采用,理解即可。
特点:
- 每个库的结构都一样;
- 每个库的数据都不一样,没有交集;
- 所有库的并集是全量数据;
场景:系统绝对并发量上来了,CPU内存压力大。分表难以根本上解决量的问题,并且还没有明显的业务归属来垂直分库,主库磁盘接近饱和。
其实,在实际工作中,我们在选择分库分表策略前,想到的应该是从缓存、读写分离、SQL优化等方面,因为这些能够更直接、代价更小的解决问题。要记住动表就是动根本,你永远不知道这张表后面会连带多少历史遗留问题,如果是个很大型的项目,遇到些问题你就跟经理提议要分库分表,小心被呼死~
小结
今天我们复习了面试中常问的三个实战问题,你做到心中有数了么?
作者:_陈哈哈
原文链接:
https://blog.csdn.net/qq_39390545/article/details/120348926
相关推荐
- 2025最新指南:Quarkus整合Redisson,轻松玩转分布式锁!
-
分布式系统的高并发场景下,如何确保资源操作的原子性和一致性?Redisson作为Redis官方推荐的分布式锁方案,结合Quarkus的云原生特性,能实现高性能、低延迟的分布式锁管理。本文将从原理到实战...
- Linux进程上下文切换过程context_switch详解
-
1前言1.1Linux的调度器组成2个调度器可以用两种方法来激活调度一种是直接的,比如进程打算睡眠或出于其他原因放弃CPU另一种是通过周期性的机制,以固定的频率运行,不时的检测是否有必要因此...
- 开发10年面试过上千人,在网易面试Java程序员,我最爱问这些问题
-
在网易当了3年的面试官,一般在面试Java程序员的时候,我主要会从这几个角度,去问这些问题,在这篇文章中,我会用我上一位面试过程来为大家总结,我面试的时候爱问的这些问题!有需要面试的小伙伴可以参考一下...
- 电影票务APP的“座位锁定”,Redis如何避免冲突?
-
现在买电影票,真是越来越方便了!再也不用提前老半天跑去电影院排队,在手机APP上动动手指,选好场次、挑好座位,在线支付,一气呵成。尤其是遇到热门大片,或者想抢个“皇帝位”(中间靠后视野好的位置),那个...
- Serverless架构下,Redis的用武之地在哪里?
-
在云计算的演进浪潮中,Serverless(无服务器)架构无疑是一颗璀璨的明星。它将传统服务器的运维复杂性彻底“隐藏”起来,开发者只需关注核心业务逻辑,编写一个个独立的函数(Function-as-a...
- 高可用聊天系统设计方案(Hyperf实现)
-
一、系统架构设计1.分层架构图客户端↑↓HTTP/WSAPI网关层(Nginx+Keepalived)↑↓RPC业务服务集群↑↓数据层(MySQLClus...
- 大厂面试冲刺,Java“实战”问题三连,你碰到了哪个?
-
推荐学习全网首发!马士兵内部共享—1658页《Java面试突击核心讲》狂刷《Java权威面试指南(阿里版)》,冲击“金九银十”有望了Java“实战”问题三连Java“实战”面试题1:如果用mybati...
- 企业开发必备的6个Spring Cloud微服务开源项目
-
今天介绍六款比较热门的SpringCloud微服务项目,感兴趣的可以clone下来研究一下,相信对你学习微服务架构很有帮助。一、Cloud-Platform介绍Cloud-Platform是国内首个基...
- 系统架构设计方法论:系统演进的四重境界
-
在架构师面试中,设计能力的考察本质是验证候选人如何将混沌需求转化为可落地的技术方案。这不仅需要扎实的技术功底,更需要系统化的设计思维。以下四大步骤,既是架构设计的核心框架,也是技术决策的动态沙盘推演。...
- 跨浏览器共享Session信息方法总结
-
在不同浏览器之间共享Session信息需要克服浏览器间的隔离机制,常见解决方案如下:1.基于Token的跨浏览器传递实现方式:用户在主浏览器生成临时Token(如加密URL或二维码)。其他浏览器通过...
- 如何设计一套单点登录系统
-
一、介绍昨天介绍了API接口设计token鉴权方案,其实token鉴权最佳的实践场景就是在单点登录系统上。在企业发展初期,使用的后台管理系统还比较少,一个或者两个。以电商系统为例,在起步阶段,可能只有...
- SpringBoot实现单点登录几种方案
-
前言:单点登录(SingleSign-On,SSO)是企业应用系统中常见的用户认证方案,它允许用户使用一组凭证访问多个相关但独立的系统,无需重复登录。基于Cookie-Session的传统SSO方案...
- 零基础小白如何学爬虫技术?看一遍就会的详细教程!
-
你以为爬虫需要精通编程、算法、网络协议才能入门?错了。作为零基础的小白,你完全可以在3周内学会主流网站的数据抓取,核心秘诀就两点:拆分具体目标+倒推式学习。与其纠结Python语法、HTTP协议这...
- 探秘Java中的分布式锁:优雅地协调分布式系统
-
探秘Java中的分布式锁:优雅地协调分布式系统在分布式系统的架构中,数据一致性是一个永恒的挑战。当我们需要在多个节点之间协调某些操作时,分布式锁便成为了一种不可或缺的工具。它就像一把钥匙,能够控制对共...
- 一文读懂 Spring Boot 3 分布式事务解决方案
-
在当今复杂的业务架构中,分布式事务处理是关键难题之一。随着业务规模的不断扩张,系统架构从单体逐渐演进为分布式,这就要求开发人员能够熟练掌握高效的分布式事务解决方案,以保障数据的一致性和业务的稳定性。今...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)