每个程序员应该彻底掌握的多线程编程(Linux C)
mhr18 2025-05-14 14:56 3 浏览 0 评论
多线程编程可以说每个程序员的基本功,同时也是开发中的难点之一,本文以Linux C为例,讲述了线程的创建及常用的几种线程同步的方式,最后对多线程编程进行了总结与思考并给出代码示例。
一、创建线程
多线程编程的第一步,创建线程。创建线程其实是增加了一个控制流程,使得同一进程中存在多个控制流程并发或者并行执行。
线程创建函数,其他函数这里不再列出,可以参考pthread.h。
#include<pthread.h>
int pthread_create(
pthread_t *restrict thread, /*线程id*/
const pthread_attr_t *restrict attr, /*线程属性,默认可置为NULL,表示线程属性取缺省值*/
void *(*start_routine)(void*), /*线程入口函数*/
void *restrict arg /*线程入口函数的参数*/
);
代码示例:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<unistd.h>
#include<pthread.h>
char* thread_func1(void* arg) {
pid_t pid = getpid();
pthread_t tid = pthread_self();
printf("%s pid: %u, tid: %u (0x%x)\n", (char*)arg, (unsigned int)pid, (unsigned int)tid, (unsigned int)tid);
char* msg = "thread_func1";
return msg;
}
void* thread_func2(void* arg) {
pid_t pid = getpid();
pthread_t tid = pthread_self();
printf("%s pid: %u, tid: %u (0x%x)\n", (char*)arg, (unsigned int)pid, (unsigned int)tid, (unsigned int)tid);
char* msg = "thread_func2 ";
while(1) {
printf("%s running\n", msg);
sleep(1);
}
return NULL;
}
int main() {
pthread_t tid1, tid2;
if (pthread_create(&tid1, NULL, (void*)thread_func1, "new thread:") != 0) {
printf("pthread_create error.");
exit(EXIT_FAILURE);
}
if (pthread_create(&tid2, NULL, (void*)thread_func2, "new thread:") != 0) {
printf("pthread_create error.");
exit(EXIT_FAILURE);
}
pthread_detach(tid2);
char* rev = NULL;
pthread_join(tid1, (void *)&rev);
printf("%s return.\n", rev);
pthread_cancel(tid2);
printf("main thread end.\n");
return 0;
}
二、线程同步
有时候我们需要多个线程相互协作来执行,这时需要线程间同步。线程间同步的常用方法有:
- 互斥
- 信号量
- 条件变量
我们先看一个未进行线程同步的示例:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<unistd.h>
#include<pthread.h>
#define LEN 100000
int num = 0;
void* thread_func(void* arg) {
for (int i = 0; i< LEN; ++i) {
num += 1;
}
return NULL;
}
int main() {
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, (void*)thread_func, NULL);
pthread_create(&tid2, NULL, (void*)thread_func, NULL);
char* rev = NULL;
pthread_join(tid1, (void *)&rev);
pthread_join(tid2, (void *)&rev);
printf("correct result=%d, wrong result=%d.\n", 2*LEN, num);
return 0;
}
运行结果:correct result=200000, wrong result=106860.。
分享更多关于 Linux后端开发网络底层原理知识学习提升 点击 正在跳转 获取,完善技术栈,内容知识点包括Linux,Nginx,ZeroMQ,MySQL,Redis,线程池,MongoDB,ZK,Linux内核,CDN,P2P,epoll,Docker,TCP/IP,协程,DPDK等等。
【1】互斥
这个是最容易理解的,在访问临界资源时,通过互斥,限制同一时刻最多只能有一个线程可以获取临界资源。
其实互斥的逻辑就是:如果访问临界资源发现没有其他线程上锁,就上锁,获取临界资源,期间如果其他线程执行到互斥锁发现已锁住,则线程挂起等待解锁,当前线程访问完临界资源后,解锁并唤醒其他被该互斥锁挂起的线程,等待再次被调度执行。
“挂起等待”和“唤醒等待线程”的操作如何实现?每个Mutex有一个等待队列,一个线程要在Mutex上挂起等待,首先在把自己加入等待队列中,然后置线程状态为睡眠,然后调用调度器函数切换到别的线程。一个线程要唤醒等待队列中的其它线程,只需从等待队列中取出一项,把它的状态从睡眠改为就绪,加入就绪队列,那么下次调度器函数执行时就有可能切换到被唤醒的线程。
主要函数如下:
#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr); /*初始化互斥量*/
int pthread_mutex_destroy(pthread_mutex_t *mutex); /*销毁互斥量*/
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
用互斥解决上面计算结果错误的问题,示例如下:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<unistd.h>
#include<pthread.h>
#define LEN 100000
int num = 0;
void* thread_func(void* arg) {
pthread_mutex_t* p_mutex = (pthread_mutex_t*)arg;
for (int i = 0; i< LEN; ++i) {
pthread_mutex_lock(p_mutex);
num += 1;
pthread_mutex_unlock(p_mutex);
}
return NULL;
}
int main() {
pthread_mutex_t m_mutex;
pthread_mutex_init(&m_mutex, NULL);
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, (void*)thread_func, (void*)&m_mutex);
pthread_create(&tid2, NULL, (void*)thread_func, (void*)&m_mutex);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
pthread_mutex_destroy(&m_mutex);
printf("correct result=%d, result=%d.\n", 2*LEN, num);
return 0;
}
运行结果:correct result=200000, result=200000.
如果在互斥中还嵌套有其他互斥代码,需要注意死锁问题。
产生死锁的两种情况:
- 一种情况是:如果同一个线程先后两次调用lock,在第二次调用时,由于锁已经被占用,该线程会挂起等待别的线程释放锁,然而锁正是被自己占用着的,该线程又被挂起而没有机会释放锁,因此就永远处于挂起等待状态了,产生死锁。
- 另一种典型的死锁情形是:线程A获得了锁1,线程B获得了锁2,这时线程A调用lock试图获得锁2,结果是需要挂起等待线程B释放锁2,而这时线程B也调用lock试图获得锁1,结果是需要挂起等待线程A释放锁1,于是线程A和B都永远处于挂起状态了。
如何避免死锁:
- 不用互斥锁(这个很多时候很难办到)
- 写程序时应该尽量避免同时获得多个锁。
- 如果一定有必要这么做,则有一个原则:如果所有线程在需要多个锁时都按相同的先后顺序(常见的是按Mutex变量的地址顺序)获得锁,则不会出现死锁。 (比如一个程序中用到锁1、锁2、锁3,它们所对应的Mutex变量的地址是锁1<锁2<锁3,那么所有线程在需要同时获得2个或3个锁时都应该按锁1、锁2、锁3的顺序获得。如果要为所有的锁确定一个先后顺序比较困难,则应该尽量使用pthread_mutex_trylock调用代替pthread_mutex_lock调用,以避免死锁。)
【2】条件变量
条件变量概括起来就是:一个线程需要等某个条件成立(而这个条件是由其他线程决定的)才能继续往下执行,现在这个条件不成立,线程就阻塞等待,等到其他线程在执行过程中使这个条件成立了,就唤醒线程继续执行。
相关函数如下:
#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);
int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);
int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);
举个最容易理解条件变量的例子,“生产者-消费者”模式中,生产者线程向队列中发送数据,消费者线程从队列中取数据,当消费者线程的处理速度大于生产者线程时,会产生队列中没有数据了,一种处理办法是等待一段时间再次“轮询”,但这种处理方式不太好,你不知道应该等多久,这时候条件变量可以很好的解决这个问题。下面是代码:
#include<sys/types.h>
#include<unistd.h>
#include<stdlib.h>
#include<stdio.h>
#include<pthread.h>
#include<errno.h>
#include<string.h>
#define LIMIT 1000
struct data {
int n;
struct data* next;
};
pthread_cond_t condv = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;
struct data* phead = NULL;
void producer(void* arg) {
printf("producer thread running.\n");
int count = 0;
for (;;) {
int n = rand() % 100;
struct data* nd = (struct data*)malloc(sizeof(struct data));
nd->n = n;
pthread_mutex_lock(&mlock);
struct data* tmp = phead;
phead = nd;
nd->next = tmp;
pthread_mutex_unlock(&mlock);
pthread_cond_signal(&condv);
count += n;
if(count > LIMIT) {
break;
}
sleep(rand()%5);
}
printf("producer count=%d\n", count);
}
void consumer(void* arg) {
printf("consumer thread running.\n");
int count = 0;
for(;;) {
pthread_mutex_lock(&mlock);
if (NULL == phead) {
pthread_cond_wait(&condv, &mlock);
} else {
while(phead != NULL) {
count += phead->n;
struct data* tmp = phead;
phead = phead->next;
free(tmp);
}
}
pthread_mutex_unlock(&mlock);
if (count > LIMIT)
break;
}
printf("consumer count=%d\n", count);
}
int main() {
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, (void*)producer, NULL);
pthread_create(&tid2, NULL, (void*)consumer, NULL);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
return 0;
}
分享更多关于 Linux后端开发网络底层原理知识学习提升 点击 正在跳转 获取,完善技术栈,内容知识点包括Linux,Nginx,ZeroMQ,MySQL,Redis,线程池,MongoDB,ZK,Linux内核,CDN,P2P,epoll,Docker,TCP/IP,协程,DPDK等等。
完整视频链接点击:C/C++Linux服务器开发/后台架构师【零声学院】-学习视频教程-腾讯课堂
条件变量中的执行逻辑:
关键是理解执行到int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex) 这里时发生了什么,其他的都比较容易理解。执行这条函数前需要先获取互斥锁,判断条件是否满足,如果满足执行条件,则继续向下执行后释放锁;如果判断不满足执行条件,则释放锁,线程阻塞在这里,一直等到其他线程通知执行条件满足,唤醒线程,再次加锁,向下执行后释放锁。(简而言之就是:释放锁-->阻塞等待-->唤醒后加锁返回)
上面的例子可能有些繁琐,下面的这个代码示例则更为简洁:
#include<sys/types.h>
#include<unistd.h>
#include<stdlib.h>
#include<stdio.h>
#include<pthread.h>
#include<errno.h>
#include<string.h>
#define NUM 3
pthread_cond_t condv = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;
void producer(void* arg) {
int n = NUM;
while(n--) {
sleep(1);
pthread_cond_signal(&condv);
printf("producer thread send notify signal. %d\t", NUM-n);
}
}
void consumer(void* arg) {
int n = 0;
while (1) {
pthread_cond_wait(&condv, &mlock);
printf("recv producer thread notify signal. %d\n", ++n);
if (NUM == n) {
break;
}
}
}
int main() {
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, (void*)producer, NULL);
pthread_create(&tid2, NULL, (void*)consumer, NULL);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
return 0;
}
运行结果:
producer thread send notify signal. 1 recv producer thread notify signal. 1
producer thread send notify signal. 2 recv producer thread notify signal. 2
producer thread send notify signal. 3 recv producer thread notify signal. 3
【3】信号量
信号量适用于控制一个仅支持有限个用户的共享资源。用于保持在0至指定最大值之间的一个计数值。当线程完成一次对该semaphore对象的等待时,该计数值减一;当线程完成一次对semaphore对象的释放时,计数值加一。当计数值为0时,线程挂起等待,直到计数值超过0.
主要函数如下:
#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t * sem);
int sem_destroy(sem_t * sem);
代码示例如下:
#include<sys/types.h>
#include<unistd.h>
#include<stdlib.h>
#include<stdio.h>
#include<pthread.h>
#include<errno.h>
#include<string.h>
#include<semaphore.h>
#define NUM 5
int queue[NUM];
sem_t psem, csem;
void producer(void* arg) {
int pos = 0;
int num, count = 0;
for (int i=0; i<12; ++i) {
num = rand() % 100;
count += num;
sem_wait(&psem);
queue[pos] = num;
sem_post(&csem);
printf("producer: %d\n", num);
pos = (pos+1) % NUM;
sleep(rand()%2);
}
printf("producer count=%d\n", count);
}
void consumer(void* arg){
int pos = 0;
int num, count = 0;
for (int i=0; i<12; ++i) {
sem_wait(&csem);
num = queue[pos];
sem_post(&psem);
printf("consumer: %d\n", num);
count += num;
pos = (pos+1) % NUM;
sleep(rand()%3);
}
printf("consumer count=%d\n", count);
}
int main() {
sem_init(&psem, 0, NUM);
sem_init(&csem, 0, 0);
pthread_t tid[2];
pthread_create(&tid[0], NULL, (void*)producer, NULL);
pthread_create(&tid[1], NULL, (void*)consumer, NULL);
pthread_join(tid[0], NULL);
pthread_join(tid[1], NULL);
sem_destroy(&psem);
sem_destroy(&csem);
return 0;
}
信号量的执行逻辑:
当需要获取共享资源时,先检查信号量,如果值大于0,则值减1,访问共享资源,访问结束后,值加1,如果发现有被该信号量挂起的线程,则唤醒其中一个线程;如果检查到信号量为0,则挂起等待。
三、多线程编程总结与思考
最后,我们对多线程编程进行总结与思考。
- 第一点就是在进行多线程编程时一定注意考虑同步的问题,因为多数情况下我们创建多线程的目的是让他们协同工作,如果不进行同步,可能会出现问题。
- 第二点,死锁的问题。在多个线程访问多个临界资源时,处理不当会发生死锁。如果遇到编译通过,运行时卡住了,有可能是发生死锁了,可以先思考一下是那些线程会访问多个临界资源,这样查找问题会快一些。
- 第三点,临界资源的处理,多线程出现问题,很大原因是多个线程访问临界资源时的问题,一种处理方式是将对临界资源的访问与处理全部放到一个线程中,用这个线程服务其他线程的请求,这样只有一个线程访问临界资源就会解决很多问题。
- 第四点,线程池,在处理大量短任务时,我们可以先创建好一个线程池,线程池中的线程不断从任务队列中取任务执行,这样就不用大量创建线程与销毁线程,这里不再细述。
相关推荐
- B站收藏视频失效?mybili 收藏夹备份神器完整部署指南
-
本内容来源于@什么值得买APP,观点仅代表作者本人|作者:羊刀仙很多B站用户都有过类似经历:自己精心收藏的视频突然“消失”,点开一看不是“已被删除”,就是“因UP主设置不可见”。而B站并不会主动通知...
- 中间件推荐初始化配置
-
Redis推荐初始化配置bind0.0.0.0protected-modeyesport6379tcp-backlog511timeout300tcp-keepalive300...
- Redis中缓存穿透问题与解决方法
-
缓存穿透问题概述在Redis作为缓存使用时,缓存穿透是常见问题。正常查询流程是先从Redis缓存获取数据,若有则直接使用;若没有则去数据库查询,查到后存入缓存。但当请求的数据在缓存和数据库中都...
- 后端开发必看!Redis 哨兵机制如何保障系统高可用?
-
你是否曾在项目中遇到过Redis主服务器突然宕机,导致整个业务系统出现数据读取异常、响应延迟甚至服务中断的情况?面对这样的突发状况,作为互联网大厂的后端开发人员,如何快速恢复服务、保障系统的高可用...
- Redis合集-大Key处理建议
-
以下是Redis大Key问题的全流程解决方案,涵盖检测、处理、优化及预防策略,结合代码示例和最佳实践:一、大Key的定义与风险1.大Key判定标准数据类型大Key阈值风险场景S...
- 深入解析跳跃表:Redis里的"老六"数据结构,专治各种不服
-
大家好,我是你们的码农段子手,今天要给大家讲一个Redis世界里最会"跳科目三"的数据结构——跳跃表(SkipList)。这货表面上是个青铜,实际上是个王者,连红黑树见了都要喊声大哥。...
- Redis 中 AOF 持久化技术原理全解析,看完你就懂了!
-
你在使用Redis的过程中,有没有担心过数据丢失的问题?尤其是在服务器突然宕机、意外断电等情况发生时,那些还没来得及持久化的数据,是不是让你夜不能寐?别担心,Redis的AOF持久化技术就是...
- Redis合集-必备的几款运维工具
-
Redis在应用Redis时,经常会面临的运维工作,包括Redis的运行状态监控,数据迁移,主从集群、切片集群的部署和运维。接下来,从这三个方面,介绍一些工具。先来学习下监控Redis实时...
- 别再纠结线程池大小 + 线程数量了,没有固定公式的!
-
我们在百度上能很轻易地搜索到以下线程池设置大小的理论:在一台服务器上我们按照以下设置CPU密集型的程序-核心数+1I/O密集型的程序-核心数*2你不会真的按照这个理论来设置线程池的...
- 网络编程—IO多路复用详解
-
假如你想了解IO多路复用,那本文或许可以帮助你本文的最大目的就是想要把select、epoll在执行过程中干了什么叙述出来,所以具体的代码不会涉及,毕竟不同语言的接口有所区别。基础知识IO多路复用涉及...
- 5分钟学会C/C++多线程编程进程和线程
-
前言对线程有基本的理解简单的C++面向过程编程能力创造单个简单的线程。创造单个带参数的线程。如何等待线程结束。创造多个线程,并使用互斥量来防止资源抢占。会使用之后,直接跳到“汇总”,复制模板来用就行...
- 尽情阅读,技术进阶,详解mmap的原理
-
1.一句话概括mmapmmap的作用,在应用这一层,是让你把文件的某一段,当作内存一样来访问。将文件映射到物理内存,将进程虚拟空间映射到那块内存。这样,进程不仅能像访问内存一样读写文件,多个进程...
- C++11多线程知识点总结
-
一、多线程的基本概念1、进程与线程的区别和联系进程:进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程;线程:是运行中的实际的任务执行者。可以说,进程中包含了多...
- 微服务高可用的2个关键技巧,你一定用得上
-
概述上一篇文章讲了一个朋友公司使用SpringCloud架构遇到问题的一个真实案例,虽然不是什么大的技术问题,但如果对一些东西理解的不深刻,还真会犯一些错误。这篇文章我们来聊聊在微服务架构中,到底如...
- Java线程间如何共享与传递数据
-
1、背景在日常SpringBoot应用或者Java应用开发中,使用多线程编程有很多好处,比如可以同时处理多个任务,提高程序的并发性;可以充分利用计算机的多核处理器,使得程序能够更好地利用计算机的资源,...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)