无锁队列Disruptor原理解析(无锁队列实现)
mhr18 2025-02-03 14:08 18 浏览 0 评论
队列比较
队列
总结:
就性能而言,无锁(什么也不加) > CAS > LOCK;
从现实使用中考虑,我们一般选择有界队列(避免生产者速度过快,导致内存溢出);同时,为了减少Java的垃圾回收对系统性能的影响,会尽量选择array/heap格式的数据结构。所以我们实际使用中用ArrayBlockingQueue多一些;
注:之后会将ArrayBlockingQueue和Disruptor做一些对比。
Disruptor是什么
Disruptor是英国外汇交易公司LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级)。基于Disruptor开发的系统单线程能支撑每秒600万订单,2010年在QCon演讲后,获得了业界关注。2011年,企业应用软件专家Martin Fowler专门撰写长文介绍。同年它还获得了Oracle官方的Duke大奖。
目前,包括Apache Storm、Camel、Log4j 2等在内的很多知名项目都应用了Disruptor以获取高性能。
数据来自:
https://github.com/LMAX-Exchange/disruptor/wiki/Performance-Results
Disruptor原理解析
CPU缓存
缓存层级越接近于 CPU core,容量越小,速度越快,当 CPU 执行运算的时候,它先去 L1 查找所需的数据,再去 L2,然后是 L3,最后如果这些缓存中都没有,所需的数据就要去主内存拿。走得越远,运算耗费的时间就越长。
缓存行
缓存行 (Cache Line) 是 CPU Cache 中的最小单位,CPU Cache 由若干缓存行组成,一个缓存行的大小通常是 64 字节(这取决于 CPU),并且它有效地引用主内存中的一块地址。一个 Java 的 long 类型是 8 字节,因此在一个缓存行中可以存 8 个 long 类型的变量。
CPU每次从主存中拉取数据时,会把相邻的数据也存入同一个cache line。
在访问一个long数组的时候,如果数组中的一个值被加载到缓存中,它会自动加载另外7个。因此你能非常快的遍历这个数组。事实上,你可以非常快速的遍历在连续内存块中分配的任意数据结构。
利用CPU缓存-示例
伪共享
如果多个线程的变量共享了同一个 CacheLine,任意一方的修改操作都会使得整个 CacheLine 失效(因为 CacheLine 是 CPU 缓存的最小单位),也就意味着,频繁的多线程操作,CPU 缓存将会彻底失效,降级为 CPU core 和主内存的直接交互。
如何解决伪共享(字节填充)
RingBuffer
在Disruptor中采用了数组的方式保存了我们的数据,上面我们也介绍了采用数组保存我们访问时很好的利用缓存,但是在Disruptor中进一步选择采用了环形数组进行保存数据,也就是RingBuffer。在这里先说明一下环形数组并不是真正的环形数组,在RingBuffer中是采用取余的方式进行访问的,比如数组大小为 10,0访问的是数组下标为0这个位置,其实10,20等访问的也是数组的下标为0的这个位置。
当然其不仅解决了数组快速访问的问题,也解决了不需要再次分配内存的问题,减少了垃圾回收,因为我们0,10,20等都是执行的同一片内存区域,这样就不需要再次分配内存,频繁的被JVM垃圾回收器回收。
实际上,在这些框架中取余并不是使用%运算,都是使用的&与运算,这就要求你设置的大小一般是2的N次方也就是,10,100,1000等等,这样减去1的话就是,1,11,111,就能很好的使用index & (size -1),这样利用位运算就增加了访问速度。 如果在Disruptor中你不用2的N次方进行大小设置,他会抛出buffersize必须为2的N次方异常。
Disruptor生产者和消费者
生产者写入数据
写入数据的步骤包括:
1.占位;
2.移动游标并填充数据;
需要考虑的问题:
1.如何避免生产者的生产速度过快而造成的新消息覆盖了未被消费的旧消息的问题;
2.如何解决多个生产者抢占生产位的问题;
1.如何避免生产者的生产速度过快而造成的新消息覆盖了未被消费的旧消息的问题;
答:生产者再获取占位之前需要查看当前最慢的消费者位置,如果当前要发布的位置比消费者大,就等待;
2.如何解决多个生产者抢占生产位的问题;
多个生产者通过CAS获取生产位;
消费者读取数据
说明:
1.一个消费者一个线程;
2.每个消费者都有一个游标表示已经消费到哪了(Sequence);
3.消息者会等待(waitFor)新数据,直到生产者通知(signal);
需要考虑的问题:
如何防止读取的时候,读到还未写的元素?
WaitStrategy(等待策略):
BlockingWaitStrategy:默认策略,没有获取到任务的情况下线程会进入等待状态。cpu 消耗少,但是延迟高。
TimeoutBlockingWaitStrategy:相对于BlockingWaitStrategy来说,设置了等待时间,超过后抛异常。
BusySpinWaitStrategy:线程一直自旋等待。cpu 占用高,延迟低.
YieldingWaitStrategy:尝试自旋 100 次,然后调用 Thread.yield() 让出 cpu。cpu 占用高,延迟低。
SleepingWaitStrategy:尝试自旋 100 此,然后调用 Thread.yield() 100 次,如果经过这两百次的操作还未获取到任务,就会尝试阶段性挂起自身线程。此种方式是对cpu 占用和延迟的一种平衡,性能不太稳定。
生产者写入数据示例1
生产者写入数据示例2
总结
Disruptor与ArrayBlockingQueue不同的地方:
1.增加缓存行补齐, 提升cache缓存命中率, 没有为伪共享和非预期的竞争;
2. 可选锁无关lock-free, 没有竞争所以非常快;
3. 环形数组中的元素不会被删除;
4. 支持多个消费者,每个消费者都可以获得相同的消息(广播)。 而ArrayBlockingQueue元素被一个消费者取走后,其它消费者就无法从Queue中取到;
相关推荐
- MYSQL数据同步(mysql数据同步方式)
-
java开发工程师在实际的开发经常会需要实现两台不同机器上的MySQL数据库的数据同步,要解决这个问题不难,无非就是mysql数据库的数据同步问题。但要看你是一次性的数据同步需求,还是定时数据同步,亦...
- SpringBoot+Redis实现点赞收藏功能+定时同步数据库
-
由于点赞收藏都是高频率的操作,如果因此频繁地写入数据库会造成数据库压力比较大,因此采用redis来统计点赞收藏浏览量,之后定时一次性写入数据库中,缓解数据库地压力。一.大体思路设计redis中的储存结...
- 双11订单洪峰:Codis代理层如何扛住Redis集群搞不定的120万QPS?
-
双11订单洪峰下的技术挑战每年的双11购物节,都是对电商平台技术架构的极限考验。当零点钟声敲响,海量用户瞬间涌入,订单量呈指数级增长,系统需要承受每秒数十万甚至上百万次的请求。作为电商系统的核心组件之...
- 基于spring boot + MybatisPlus 商城管理系统的Java开源商城系统
-
前言Mall4j项目致力于为中小企业打造一个完整、易于维护的开源的电商系统,采用现阶段流行技术实现。后台管理系统包含商品管理、订单管理、运费模板、规格管理、会员管理、运营管理、内容管理、统计报表、权限...
- 商品券后价产品设计方案(显示券后价)
-
如何设计一套高效、准确且稳定的券后价计算系统,是电商产品设计中的关键挑战之一。本文详细介绍了商品券后价的产品设计方案,从背景目标、功能设计、系统实现逻辑到异常处理机制等多个方面进行了全面阐述。一、背景...
- 外观(门面)模式-Java实现(java 门面模式)
-
定义外观模式(FacadePattern),也叫门面模式,原始定义是:为了子系统中的一组接口提供统一的接口。定义一个更高级别的接口,使子系统更易于使用。大大降低应用程序的复杂度,提高了程序的可维护性...
- Mall - 用 SpringBoot 实现一个电商系统
-
目前最为主流的Web开发技术,包括SpringBoot、MyBatis、MongoDB、Kibina、Docker、Vue等,都是开发者十分需要掌握的技术。有没有一个全面而又实际的项目,能把这...
- 腾讯云国际站:哪些工具能实现可视化运维?
-
本文由【云老大】TG@yunlaoda360撰写开源工具Grafana:开源的可视化平台,可与Prometheus、Elasticsearch、MySQL等多种数据源集成,将复杂监控数据转化...
- 系统稳定性保障全流程实战:事前、事中、事后 Java 代码详解
-
在互联网架构中,系统稳定性是生命线。本文基于“事前预防、事中管控、事后复盘”三阶段模型,结合Java实战代码,深度解析如何构建高可用系统,让你的服务稳如磐石!一、事前:未雨绸缪,筑牢防线1.发...
- Java面试题:拆分微服务应该注意哪些地方方,如何拆分?
-
在拆分微服务时,需要综合考虑业务、技术和组织等多方面因素,以下是关键注意事项及拆分策略的详细说明:一、拆分注意事项1.业务边界清晰化单一职责原则:每个服务应专注于单一业务能力,例如订单服务仅处理订单...
- 软件性能调优全攻略:从瓶颈定位到工具应用
-
性能调优是软件测试中的重要环节,旨在提高系统的响应时间、吞吐量、并发能力、资源利用率,并降低系统崩溃或卡顿的风险。通常,性能调优涉及发现性能瓶颈、分析问题根因、优化代码和系统配置等步骤,调优之前需要先...
- Docker Compose实战,多容器协同编排的利器,让开发部署更高效!
-
开篇导读你是否有过这样的经历?启动一个项目,数据库、Redis、Web服务得一个个敲dockerrun?想让别人复现你的开发环境,却得发一堆复杂的启动命令?明明都是容器,为什么不能“一键启动”所...
- 如何设计Agent的记忆系统(agent记忆方法)
-
最近看了一张画Agent记忆分类的图我觉得分类分的还可以,但是太浅了,于是就着它的逻辑,仔细得写了一下在不同的记忆层,该如何设计和选型先从流程,作用,实力和持续时间的这4个维度来解释一下这几种记忆:1...
- 不了解业务和技术术语怎么做好产品和项目?
-
基础技术术语术语分类解释API开发技术应用程序接口,不同系统间数据交互的协议(如支付接口、地图接口)。SDK开发工具软件开发工具包,包含API、文档和示例代码,帮助快速接入服务。RESTfulAPI...
- Docker 架构详解与核心概念实战图解:一文读懂容器的前世今生
-
不懂Docker架构,你只是“用容器的人”;理解了它的底层逻辑,才能成为真正的高手!在学习Docker之前,很多同学可能会陷入一个误区:“反正我用dockerrun就能跑起服务,架构这种...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)